SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Fabian Cardoso(fabian@unirv.edu.br)
2 Juan Malska(juanandreyvmalska@furg.br)
3 Paulo Ramiro(paulojr2016canaa@furg.br)
4 Giancarlo Lucca(giancarlo.lucca@furg.br)
5 Eduardo Borges(eduardoborges@furg.br)
6 Viviane Mattos(vivianemattos@furg.br)
7 Rafael Berri(rafaelberri@gmail.com)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Alhnaity and Abbod 2020] Alhnaity, B. and Abbod, M. (2020). A new hybrid financial time series prediction model. Engineering Applications of Artificial Intelligence, 95:103873.
2 [Allen and Owens 2010] Allen, G. and Owens, M. (2010). The Definitive Guide to SQLite. Apress, USA, 2nd edition.
3 [Basak et al. 2019] Basak, S., Kar, S., Saha, S., Khaidem, L., and Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47:552–567.
4 [Bustos and Pomares-Quimbaya 2020] Bustos, O. and Pomares-Quimbaya, A. (2020). Stock market movement forecast: A systematic review. Expert Systems with Applications, 156:113464.
5 [Del Ángel 2020] Del Ángel, R. G. (2020). Financial time series forecasting using artificial neural networks. Revista Mexicana de Economía y Finanzas Nueva Época REMEF, 15(1):105–122.
6 [Efimov et al. 2020] Efimov, D., Xu, D., Kong, L., Nefedov, A., and Anandakrishnan, A. (2020). Using generative adversarial networks to synthesize artificial financial datasets. arXiv preprint arXiv:2002.02271.
7 [Garcia-Molina 2008] Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
8 [Guo et al. 2018] Guo, Y., Han, S., Shen, C., Li, Y., Yin, X., and Bai, Y. (2018). An adaptive svr for high-frequency stock price forecasting. IEEE Access, 6:11397–11404.
9 [Harris 1997] Harris, R. D. (1997). Stock markets and development: A re-assessment. European Economic Review, 41(1):139–146.
10 [Hu et al. 2021] Hu, Z., Zhao, Y., and Khushi, M. (2021). A survey of forex and stock price prediction using deep learning. Applied System Innovation, 4(1):9.
11 [Li and Bastos 2020] Li, A. W. and Bastos, G. S. (2020). Stock market forecasting using deep learning and technical analysis: a systematic review. IEEE Access, 8:185232–185242.
12 [Nti et al. 2019] Nti, I. K., Adekoya, A. F., and Weyori, B. A. (2019). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, pages 1–51.
13 [Rahat et al. 2019] Rahat, A. M., Kahir, A., and Masum, A. K. M. (2019). Comparison of naive bayes and svm algorithm based on sentiment analysis using review dataset. In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART), pages 266–270. IEEE.
14 [Rousis and Papathanasiou 2018] Rousis, P. and Papathanasiou, S. (2018). Is technical analysis profitable on athens stock exchange? Mega Journal of Business Research, 2018.
15 [Schierholt and Dagli 1996] Schierholt, K. and Dagli, C. H. (1996). Stock market prediction using different neural network classification architectures. In IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr), pages 72–78. IEEE.
16 [Sezer et al. 2020] Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing, 90:106181.
17 [Sowinska and Madhyastha 2020] Sowinska, K. and Madhyastha, P. (2020). A tweet-based dataset for company-level stock return prediction. arXiv preprint arXiv:2006.09723.
18 [Thomaz et al. 2021] Thomaz, P. S., de Mattos, V. L. D., Nakamura, L. R., et al. (2021). Modeling volatility’s long-range persistence and asymmetry effect of bradesco bank stock prices using garch models. International Journal of Development Research, 11(03):45532–45543.
19 [Upadhyay et al. 2012] Upadhyay, A., Bandyopadhyay, G., and Dutta, A. (2012). Forecasting stock performance in indian market using multinomial logistic regression. Journal of Business Studies Quarterly, 3(3):16.
20 [Vachhani et al. 2019] Vachhani, H., Obiadat, M. S., Thakkar, A., Shah, V., Sojitra, R., Bhatia, J., and Tanwar, S. (2019). Machine learning based stock market analysis: A short survey. In International Conference on Innovative Data Communication Technologies and Application, pages 12–26. Springer.
21 [Wang 2021] Wang, J. (2021). The analysis of the financial market in china. Academic Journal of Business & Management, 3(2).
22 [Zhang 2021] Zhang, E. (2021). Forecasting financial performance of companies for stock valuation. Stanford Projects Spring 2021.