SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Luma Cerqueira(lumariios@gmail.com)
2 Carina Dorneles(carina.dorneles@ufsc.br)
3 SImone Werner(simone.werner@ufsc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 AFFONSO, C.; ROSSI, A. L. D.; VIEIRA, F. H. A.; CARVALHO, A. C. P. d. L. F. de. Deep learning for biological image classification. Expert Systems with Applications, v. 85, p. 114–122, 2017. Disponível em: <https://doi.org/10.1016/j.eswa.2017.05.039>.
2 AL-GHAFER, I. A.; ALAFESHAT, N.; ALSHOMALI, L.; ALANEE, S.; QATTOUS, H.; AZZEH, M.; ALKHATEEB, A. Nmf-guided feature selection and genetic algorithm-driven framework for tumor mutational burden classification in bladder cancer using multi-omics data. Network Modeling Analysis in Health Informatics and Bioinformatics, v. 13, n. 1, p. 26, 5 2024. ISSN 2192-6670. Disponível em: <https://doi.org/10.1007/s13721-024-00460-7>.
3 ALFRED, R.; LIM, Y.; HAVILUDDIN, H.; ON, C. K. Computational science and technology: 6th iccst 2019, kota kinabalu, malaysia. In: Lecture Notes in Electrical Engineering. [S.l.]: Springer, 2020. v. 603.
4 ALICKOVIC, E.; SUBASI, A. Breast cancer diagnosis using ga feature selection and rotation forest. Neural Computing and Applications, Springer, v. 28, n. 4, p. 753–763, 2017. Disponível em: <https://link.springer.com/article/10.1007/ s00521-015-2103-9>.
5 ANCONA, A.; CERQUETI, R.; VAGNANI, G. A novel methodology to disambiguate organization names: an application to eu framework programmes data. Scientometrics, Springer, v. 128, n. 8, p. 4447–4474, 2023. Disponível em: <https: //ideas.repec.org/a/spr/scient/v128y2023i8d10.1007_s11192-023-04746-x.html>.
6 ANG, J.; MIRZAL, A.; HARON, H.; HAMED, H. Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, IEEE, v. 13, n. 5, p. 971–989, 2016.
7 ANTONELLI, A.; FRY, C.; SMITH, R. J.; EDEN, J.; GOVAERTS, R. H. A.; KERSEY, P.; LUGHADHA, E. N.; ZUNTINI, A. R. State of the world’s plants and fungi 2023. Royal Botanic Gardens, Kew, 2023.
8 ASHRAF, H.; SAEED, S.; KHAN, S. Optimal feature-centric approach for eeg-based human emotion identification. IEEE on Advancements in Artificial Intelligence, IEEE, 2024. Disponível em: <https://www.researchgate.net/profile/Sheharyar-Khan-12/ publication/379153065_Optimal_Feature-Centric_Approach_for_ EEG-Based_Human_Emotion_Identification/links/65fd2c97d3a08551423d36bc/ Optimal-Feature-Centric-Approach-for-EEG-Based-Human-Emotion-Identification. pdf>.
9 BAEZA-YATES, R.; RIBEIRO-NETO, B. Modern Information Retrieval. 2nd. ed. USA: Addison-Wesley Publishing Company, 2008. ISBN 9780321416919.
10 BARBIERI, M. C.; GRISCI, B. I.; DORN, M. Analysis and comparison of feature selection methods towards performance and stability. Expert Systems with Applications, v. 249, p. 123667, 2024. ISSN 0957-4174. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0957417424005335>.
11 BEBBER, D.; CARINE, M.; WOOD, J.; WORTLEY, A.; HARRIS, D.; PRANCE, G.; DAVIDSE, G.; AL. et. Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences, v. 107, p. 22169–22171, 2010.
12 BENOS, L.; TAGARAKIS, A. C.; DOLIAS, G.; BERRUTO, R.; KATERIS, D. Machine learning in agriculture: A comprehensive updated review. Sensors, v. 21, n. 11, 2021. Disponível em: <https://www.mdpi.com/1424-8220/21/11/3758/ pdf>.
13 BOLóN-CANEDO, V.; SáNCHEZ-MAROñO, N. et al. Feature selection for high-dimensional data. Progress in Artificial Intelligence, Springer, v. 8, n. 2, p. 93–110, 2019.
14 BONIDIA, R. et al. A novel decomposing model with evolutionary algorithms for feature selection in long non-coding rnas. IEEE Access, IEEE, v. 8, p. 181683–181697, 2020.
15 BOUREL, M.; SEGURA, A. Multiclass classification methods in ecology. Ecological Indicators, Elsevier, v. 85, p. 1012–1021, 2018.
16 CAO, Q.; XIAO, X.; BIN, Y.; ZHAO, J.; ZHENG, C. Predpvp: A stacking model for predicting phage virion proteins based on feature selection methods. Current Bioinformatics, Bentham Science Publishers, 2024.
17 CHAKI, J.; DEY, N. Pattern analysis of genetics and genomics: a survey of the state-of-art. Multimedia Tools and Applications, Springer, v. 79, n. 15, p. 11163–11194, 2020.
18 CHANDRASHEKAR, G.; SAHIN, F. A survey on feature selection methods. Computers and Electrical Engineering, v. 40, n. 1, p. 16–28, 2014.
19 CHATTERJEE, S.; DAS, A. An ensemble algorithm integrating consensusclustering with feature weighting based ranking and probabilistic fuzzy logic-multilayer perceptron classifier for diagnosis and staging of breast cancer using heterogeneous datasets. Applied Intelligence, Springer, 2022.
20 CHEEK, M.; LUGHADHA, E. N.; KIRK, P.; LINDON, H.; CARRETERO, J.; LOONEY, B.; DOUGLAS, B.; HAELEWATERS, D.; GAYA, E.; LLEWELLYN, T.; AINSWORTH, A. M.; GAFFOROV, Y.; HYDE, K.; CROUS, P.; HUGHES, M.; WALKER, B. E.; FORZZA, R. C.; WONG, K. M.; NISKANEN, T. New scientific discoveries: Plants and fungi. PLANTS, PEOPLE, PLANET, v. 2, n. 5, p. 371–388, 2020. Disponível em: <https://nph.onlinelibrary.wiley.com/doi/abs/10.1002/ppp3.10148>.
21 CHEN, R.-C.; DEWI, C.; HUANG, S.-W.; CARAKA, R. E. Selecting critical features for data classification based on machine learning methods. Journal of Big Data, Springer, v. 7, p. 52, 2020. Disponível em: <https: //doi.org/10.1186/s40537-020-00327-4>.
22 CHEN, R.-C.; DEWI, C.; HUANG, S.-W.; CARAKA, R. E. Selecting critical features for data classification based on machine learning methods. Journal of Big Data, Springer, v. 7, n. 1, p. 52, 2020. Disponível em: <https://doi.org/10.1186/s40537-020-00327-4>.
23 CHEN, Y.; MA, L.; YU, D.; ZHANG, H.; FENG, K.; WANG, X. Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, Elsevier, v. 137, p. 108718, 2022. Disponível em: <https://www.sciencedi>.
24 CHRISTEN, P.; CHRISTEN, P. Evaluation of matching quality and complexity. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection, Springer, p. 163–184, 2012. Disponível em: <https://link.springer.com/book/10.1007/978-3-642-31164-2>.
25 COGATO, A.; PINNA, D.; PEZZUOLO, A.; PORNARO, C. Applications of satellite platforms and machine learning for mapping and monitoring grasslands and pastures: A systematic and comprehensive review. Smart Agricultural Technologies, 2024. Disponível em: <https://www.sciencedirect.com/science/ article/pii/S277237552400176X>.
26 COLLI-SILVA, M.; PIRANI, J. R. Biogeographic patterns of galipeinae (galipeeae, rutaceae) in brazil: species richness and endemism at different latitudes of the atlantic forest “hotspot”. Flora, Elsevier, v. 251, p. 77–87, 2019.
27 COOPER, L.; LAPORTE, M. A. e. a. The planteome database: An integrated resource for reference ontologies, plant genomics, and phenomics. Nucleic Acids Research, 2018. Disponível em: <https://academic.oup.com/nar/article-abstract/ 46/D1/D1168/4653531>.
28 CUTLER, D. R.; JR., T. C. E.; BEARD, K. H.; CUTLER, A.; HESS, K. T.; GIBSON, J.; LAWLER, J. J. Random forests for classification in ecology. Ecology, Ecological Society of America, v. 88, n. 11, p. 2783–2792, 2007.
29 DROUSIOTIS, E.; JOYCE, D.; VARSI, A.; SPIRAKIS, P.; MASKELL, S. Intrinsically interpretable decision trees for healthcare applications. ResearchSquare, 2024. Disponível em: <https://www.researchsquare.com/article/rs-4608203/ latest>.
30 EFFROSYNIDIS, D.; ARAMPATZIS, A. An evaluation of feature selection methods for environmental data. Ecological Informatics, Elsevier, v. 61, p. 101224, 2021.
31 ELMAGARMID, A. K.; IPEIROTIS, P. G.; VERYKIOS, V. S. Duplicate record detection: A survey. IEEE Transactions on knowledge and data engineering, IEEE, v. 19, n. 1, p. 1–16, 2006.
32 ENDARA, L.; COLE, H.; BURLEIGH, J.; NAGALINGUM, N.; BOGUNOVIć 2015). ACKLIN, J. MSome of these feature selection techniques can also play a role in classification models J. B.; LIU, J.; RANADE, S.; CUI, H. Building the “plant glossary”—a controlled botanical vocabulary using terms extracted from the floras of north america and china. Taxon, v. 66, 08 2017.
33 FLACH, P.; KULL, M. Precision-recall-gain curves: Pr analysis done right. In: Advances in Neural Information Processing Systems (NeurIPS). [s.n.], 2015. p. 837–845. Disponível em: <https://proceedings.neurips.cc/paper/2015/file/ 33e8075e9970de0cfea955afd4644bb2-Paper.pdf>.
34 FONTAINE, B.; PERRARD, A.; BOUCHET, P. 21 years of shelf life between discovery and description of new species. Current Biology, v. 22, p. R943–R944, 2012.
35 FORMAN, G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, Hewlett-Packard, v. 3, p. 1289–1305, 2003. Disponível em: <https://www.researchgate.net/publication/ 248591742_An_extensive_empirical_study_of_feature_selection_metrics_ for_text_classification_J>.
36 FREITAS, A. A. Comprehensible classification models: a position paper. SIGKDD Explorations, v. 15, n. 1, p. 1–10, 2014.
37 GAJJAR, V. K.; NAMBISAN, A. K.; KOSBAR, K. L. Plant identification in a combined-imbalanced leaf dataset. IEEE Access, v. 10, p. 37882–37892, 2022.
38 GANCHEVA, V.; STOEV, H. Optimization and performance analysis of cat method for dna sequence similarity searching and alignment. Preprints, 2024.
39 GAO, J.; LIU, Y.; DUAN, C.; DING, P.; SONG, J. Research on fault diagnosis of electric gate valve in nuclear power plant based on the vmdmdi-issa-rf model. Annals of Nuclear Energy, Elsevier, 2024. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0306454924003645>.
40 GARCÍA, S.; LUENGO, J.; HERRERA, F. Data preprocessing in data mining. [S.l.]: Springer, 2015. v. 72.
41 GASTON, K. Biodiversity and extinction: species and people. Progress in Physical Geography, v. 29, p. 239–247, 2005.
42 GHARIBI, A.; SEHHATI, M.; VARD, A.; MOHEBIAN, M. Identification of gene signatures for classifying of breast cancer subtypes using protein interaction database and support vector machines. In: IEEE. 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE). [S.l.], 2015. p. 195–200.
43 GOMAA, W. H.; FAHMY, A. A. A survey of text similarity approaches. International Journal of Computer Applications, Foundation of Computer Science (FCS), NY, USA, v. 68, n. 13, p. 13–18, 2013. Disponível em: <https://research.ijcaonline.org/volume68/number13/pxc3887118.pdf>.
44 GOODWIN, Z.; HARRIS, D.; FILER, D.; WOOD, J.; SCOTLAND, R. Widespread mistaken identity in tropical plant collections. Current Biology, v. 25, p. R1066–R1067, 2015.
45 GOVAERTS, R.; LUGHADHA, E. N.; BLACK, N.; TURNER, R. e. a. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 2021. Disponível em: <https://www.nature.com/articles/s41597-021-00997-6.pdf>.
46 GRANDINI, M.; BAGLI, E.; VISANI, G. Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756, 2020. Disponível em: <https://arxiv.org/pdf/2008.05756>.
47 GYAWALI, B.; ANASTASIOU, L.; KNOTH, P. Deduplication of scholarly documents using locality sensitive hashing and word embeddings. In: EUROPEAN LANGUAGE RESOURCES ASSOCIATION (ELRA). Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020). Marseille, France, 2020. p. 901–910. Disponível em: <https://aclanthology.org/2020.lrec-1.113.pdf>.
48 HE, H.; MA, Y. Imbalanced Learning: Foundations, Algorithms, and Applications. [S.l.]: IEEE Transactions on Knowledge and Data Engineering, 2022. v. 34.
49 HIRA, Z.; GILLIES, D. A review of feature selection and feature extraction methods applied on microarray data. Advances in Bioinformatics, Hindawi, v. 2015, p. 198363, 2015. Disponível em: <https://onlinelibrary.wiley.com/doi/ abs/10.1155/2015/198363>.
50 HORN, G. V.; AODHA, O. M.; SONG, Y.; CUI, Y.; SUN, C.; SHEPARD, A.; ADAM, H.; PERONA, P.; BELONGIE, S. The iNaturalist Species Classification and Detection Dataset. 2018. Disponível em: <https://arxiv.org/abs/1707.06642>.
51 HORTAL, J.; BELLO, F.; DINIZ-FILHO, J.; LEWINSOHN, T.; LOBO, J.; LADLE, R. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, v. 46, p. 523–549, 2015.
52 HOU, Y.; DAI, Y. Spatial configuration and sustainable conservation of ecotourism resources in the dabie mountains, eastern china, using an ecosystem services model. Diversity, v. 16, n. 12, p. 782, 2024. Disponível em: <https://www.mdpi.com/1424-2818/16/12/782>.
53 HUANG, S.; LI, Q.; WANG, L.; WANG, Y. Score-based causal feature selection for cancer risk prediction. In: 2023 IEEE International Conference on Machine Learning. IEEE, 2023. Disponível em: <https://ieeexplore.ieee.org/abstract/ document/10219672/>.
54 IYER, S. G.; BANERJEE, A. K.; BHOWMICK, A. R. Making choices that matter – use of statistical regularization in species distribution modelling for identification of climatic indicators – a case study with mikania micrantha kunth in india. Ecological Indicators, Elsevier, v. 98, p. 92–103, 2019.
55 JANGID, A. K.; SHA, A. A.; THAKKAR, S.; CHAWLA, N.; MV, B.; SHARP, T.; SATYANARAYAN, K.; SESHAMANI, G. Bear biometrics: developing an individual recognition technique for sloth bears. Mammalian Biology, Springer, p. 1–9, 2024. Disponível em: <https://www.researchgate. net/publication/378233518_Bear_biometrics_developing_an_individual_ recognition_technique_for_sloth_bears>.
56 JIANG, Y.; LI, C. mrmr-based feature selection for classification of cotton foreign matter using hyperspectral imaging. Computers and Electronics in Agriculture, Elsevier, v. 119, p. 191–200, 2015. Disponível em: <https://doi.org/10.1016/j.compag.2015.10.017>.
57 JOHNSON, J.; KHOSHGOFTAAR, T. Survey on deep learning with class imbalance. Journal of Big Data, v. 6, n. 1, p. 1–25, 2019.
58 JOVANOVIC, M.; RADOVANOVIC, S.; VUKICEVIC, M.; POUCKE, S. V.; DELIBASIC, B. Building interpretable predictive models for pediatric hospital readmission using tree-lasso logistic regression. Artificial Intelligence in Medicine, Elsevier, v. 72, p. 12–21, 2016.
59 JOVIć, A.; BRKIć, K.; BOGUNOVIć, N. A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.: s.n.], 2015. p. 1200–1205.
60 JR, L. G.; SIRACUSA, P. de. A survey of biodiversity informatics: Concepts, practices, and challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Wiley, v. 11, n. 2, p. e1394, 2021. Disponível em: <https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1394>.
61 KAFRAWY, P.; FATHI, H.; QARAAD, M.; KELANY, A.; CHEN, X. An efficient svm-based feature selection model for cancer classification using high-dimensional microarray data. IEEE Access, IEEE, v. 9, p. 155353–155369, 2021.
62 KIRASICH, K.; SMITH, T.; SADLER, B. Random forest vs logistic regression: Binary classification for heterogeneous datasets. SMU Data Science Review, v. 1, n. 3, p. Article 9, 2018.
63 KRUK, C.; DEVERCELLI, M.; HUSZAR, V. L. M.; HERNáNDEZ, E.; BEAMUD, G.; DIAZ, M.; SILVA, L. H. S.; SEGURA, A. M. Classification of reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology, John Wiley Sons Ltd, v. 62, n. 10, p. 1681–1692, 2017. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/fwb.12968>.
64 KUMAR, A.; SINGH, I.; KASHYAP, M.; KUMAR, A.; DEVI, N. B. Integration of machine learning and remote sensing in crop yield prediction: A review. ResearchGate, 2024. Disponível em: <https://www.researchgate.net/profile/Anil-Kumar-833/publication/ 388674945_Integration_of_machine_learning_and_remote_sensing_ in_crop_yield_prediction_A_review/links/67a1eca4207c0c20fa76de52/ Integration-of-machine-learning-and-remote-sensing-in-crop-yield-prediction-A-review. pdf>.
65 LAVNER, Y.; PÉREZ-GRANADOS, C. Computational bioacoustics and automated recognition of bird vocalizations: new tools, applications, and methods for bird monitoring. Frontiers in Bird Science, v. 16, n. 12, 2024. Disponível em: <https://www.frontiersin.org/journals/bird-science/articles/10.3389/fbirs.2024. 1518077/full>.
66 LEE, S. H.; CHAN, C. S.; MAYO, S. J.; REMAGNINO, P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, Elsevier, v. 71, p. 1–13, 2017. Disponível em: <https://doi.org/10.1016/j.patcog.2017.05.015>.
67 LEE, T. Y. Plantpan3.0: A new and updated resource for reconstructing transcriptional regulatory networks from chip-seq experiments in plants. Nucleic Acids Research, 2019. Disponível em: <https://academic.oup.com/nar/ article-abstract/47/D1/D1155/5160978>.
68 LETOVSKY, S. I. et al. Gdb: The human genome database. Nucleic Acids Research, Oxford University Press, v. 26, n. 1, p. 94–99, 1998.
69 LI, J.; CHENG, K.; WANG, S.; MORSTATTER, F.; TREVINO, R. P.; TANG, J.; LIU, H. Feature selection: A data perspective. ACM Computing Surveys, ACM, v. 50, n. 6, p. 94:1–94:45, 2017. Disponível em: <https://doi.org/10.1145/3136625>.
70 LIANG, C.; SUN, Q.; LI, J.; JI, B.; WU, W.; ZHANG, F. An interpretable ensemble trees method with joint analysis of static and dynamic features for myocardial infarction detection. Physiological Measurement, IOP Science, 2024. Disponível em: <https://iopscience.iop.org/article/10.1088/1361-6579/ad6529/meta>.
71 LIU, H.; YIN, Q.; WANG, W. Y. Towards explainable nlp: A generative explanation framework for text classification. arXiv preprint, v. 1811.00196v2, 2019. Disponível em: <https://arxiv.org/abs/1811.00196>.
72 LIU, S.; XU, C.; ZHANG, Y.; LIU, J.; YU, B.; LIU, X.; DEHMER, M. Feature selection of gene expression data for cancer classification using double rbf-kernels. BMC Bioinformatics, Springer, v. 19, n. 1, p. 396, 2018.
73 LUQUE, A.; CARRASCO, A.; MARTíN, A.; HERAS, A. de L. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, v. 91, p. 216–231, 2019.
74 MAITNER, B.; GALLAGHER, R.; SVENNING, J.-C.; TIETJE, M.; WENK, E.; EISERHARDT, W. A global assessment of the raunkiæran shortfall in plants: Geographic biases in our knowledge of plant traits. The New Phytologist, 2023.
75 MAITNER, B. S.; BOYLE, B.; CASLER, N.; CONDIT, R. e. a. The bien r package: A tool to access the botanical information and ecology network (bien) database. Methods in Ecology and Evolution, 2018. Disponível em: <https: //besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12861>.
76 MALLAH, S.; KHAKI, B. D.; DAVATGAR, N.; SCHOLTEN, T.; AMIRIANCHAKAN, A.; EMADI, M.; KERRY, R.; MOSAVI, A. H.; TAGHIZADEHMEHRJARDI, R. Predicting soil textural classes using random forest models: Learning from imbalanced dataset. Agronomy, MDPI, v. 12, p. 2613, 2022.
77 MANZOOR, M.; FAROOQ, M.; ABID, A. Stylometry-driven framework for urdu intrinsic plagiarism detection: a comprehensive analysis using machine learning, deep learning, and large language models. Neural Computing and Applications, Springer, 2025. Disponível em: <https: //link.springer.com/article/10.1007/s00521-024-10966-w>.
78 MARQUES, A.; LAMAS, C. Taxonomia zoológica no brasil: estado da arte, expectativas e sugestões de ações futuras. Papéis Avulsos de Zoologia (São Paulo), v. 46, p. 139–174, 12 2005.
79 MCELHINNEY, J.; CATACUTAN, M.; MAWART, A. Interfacing machine learning and microbial omics: a promising means to address environmental challenges. Frontiers in Microbiology, Frontiers, v. 13, p. 851450, 2022. Disponível em: <https://www.frontiersin.org/articles/10.3389/fmicb.2022.851450/full>.
80 MCINTYRE, N.; BULOVIC, N.; KEMANGA, B. Hydrological classification of mine pit lakes using modeling experiments. Journal of Environmental Management, v. 341, p. 117755, 2024. Disponível em: <https://www.sciencedirect.com/science/ article/pii/S0301479724030433>.
81 MIAO, J.; NIU, L. A survey on feature selection. Procedia Computer Science, Elsevier, v. 91, p. 919–926, 2016. Disponível em: <https: //doi.org/10.1016/j.procs.2016.07.111>.
82 MIRZAEI, S.; PARSAFARD, P. Text classification based on discriminativesemantic features and variance of fuzzy similarity. International Journal of Intelligent Systems and Applications, MECS, v. 2022, n. 2, p. 26–39, 2022. Disponível em: <https://www.researchgate.net/publication/360301091>.
83 MOCK, F.; KRETSCHMER, F.; KRIESE, A.; BÖCKER, S.; MARZ, M. Taxonomic classification of dna sequences beyond sequence similarity using deep neural networks. Proceedings of the National Academy of Sciences, v. 119, n. 31, p. e2122636119, 2022.
84 MYERS, N.; MITTERMEIER, R.; MITTERMEIER, C.; FONSECA, G.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853–858, 2000.
85 NAVARRO, G. A guided tour to approximate string matching. ACM computing surveys (CSUR), ACM New York, NY, USA, v. 33, n. 1, p. 31–88, 2001.
86 NEUMANN, K. International code for phytolith nomenclature (icpn) 2.0. Annals of Botany, 2019. Disponível em: <https://academic.oup.com/aob/article-abstract/ 124/2/189/5537002>.
87 OPARA, I. K.; OPARA, U. L.; OKOLIE, J. A.; FAWOLE, O. A. Machine learning application in horticulture and prospects for predicting fresh produce losses and waste: A review. Plants, v. 13, n. 9, 2024. Disponível em: <https://www.mdpi.com/2223-7747/13/9/1200/pdf>.
88 OSTROSKI, P.; SAITER, F. Z.; AMORIM, A. M.; FIASCHI, P. Angiosperm endemism in a brazilian atlantic forest biodiversity hot-point. Brazilian Journal of Botany, 2020. Disponível em: <https://doi.org/10.1007/s40415-020-00603-w>.
89 PACIFICO, L. D. S.; MACARIO, V.; OLIVEIRA, J. F. L. Plant classification using artificial neural networks. 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, p. 1–8, 2018.
90 PANDEY, C.; SETHY, P. K.; BEHERA, S. K.; VISHWAKARMA, J. Smart agriculture: Technological advancements on agriculture—a systematical review. Elsevier, 2022. Disponível em: <https://www.researchgate.net/profile/Prabira-Sethy/ publication/357702838_Smart_agriculture_Technological_advancements_ on_agriculture-_A_systematical_review/links/61dc21af3a192d2c8aee049a/ Smart-agriculture-Technological-advancements-on-agriculture-A-systematical-review. pdf>.
91 PASHAEI, E.; AYDIN, N. Binary black hole algorithm for feature selection and classification on biological data. Applied Soft Computing, v. 56, 03 2017.
92 PASHAEI, E.; PASHAEI, E. Hybrid binary arithmetic optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical data. Journal of Supercomputing, Springer, v. 78, n. 14, p. 15598–15637, 2022.
93 PATANKAR, M.; CHAURASIA, V.; SHANDILYA, M. A novel densenet deep neural network with enhanced feature selection method for classification of different stages of tuberculosis using chest x-ray images. Multimedia Tools and Applications, Springer, 2024. Disponível em: <https: //link.springer.com/article/10.1007/s11042-024-20381-x>.
94 PETRIE, S. M.; JULIUS, T. D. A novel text representation which enables image classifiers to also simultaneously classify text, applied to name disambiguation. Scientometrics, Springer, p. 1–25, 2023.
95 PINHEIRO, T. M. Taxonomia zoológica no brasil. Dissertação de Mestrado, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - UFRJ, 2017.
96 PRAKOSO, D. et al. Short text similarity measurement methods: A review. Journal of Big Data and Analytics in Practice, Springer, v. 3, n. 1, p. 33–44, 2021. Disponível em: <https://link.springer.com/article/10.1007/s00500-020-05479-2>.
97 PUDJIHARTONO et al. A review of feature selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics, Frontiers, v. 2, p. 1–16, 2022.
98 RADHAKRISHNAN, N.; PILLAI, A. S. Comparison of water quality classification models using machine learning. Proceedings of the International Conference on Electronics and Communication Systems, v. 1, p. 1183–1187, 2020.
99 REMESEIRO, B.; BOLON-CANEDO, V. A review of feature selection methods in medical applications. Computers in Biology and Medicine, Elsevier, v. 112, p. 103375, 2019. Disponível em: <https://doi.org/10.1016/j.compbiomed.2019. 103375>.
100 ROBERT, V.; SZOKE, S.; JABAS, B.; VU, D.; CHOUCHEN, O.; BLOM, E.; CARDINALI, G. Biolomics software: Biological data management, identification, classification, and statistics. The Open Applied Informatics Journal, v. 5, p. 87–98, 2011.
101 RODRIGUEZ, J. D.; PEREZ, A.; LOZANO, J. A. A framework for wrapper feature selection in supervised classification. Pattern Recognition, v. 86, p. 181–197, 2019.
102 ROHART, F.; GAUTIER, B.; SINGH, A. mixomics: An r package for ’omics feature selection and multiple data integration. PLoS Computational Biology, Public Library of Science (PLoS), v. 13, n. 11, p. e1005752, 2017. Disponível em: <https: //journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005752>.
103 SAEYS, Y. et al. A review of feature selection techniques in bioinformatics. Bioinformatics, Oxford University Press, v. 23, n. 19, p. 2507–2517, 2007.
104 SAJJADI, M.; BACHEM, O.; LUCIC, M. Assessing generative models via precision and recall. In: Advances in Neural Information Processing Systems (NeurIPS). [s.n.], 2018. p. 5220–5230. Disponível em: <https://proceedings. neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf>.
105 SCHRATZ, P.; MUENCHOW, J.; ITURRITXA, E. et al. Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques? Remote Sensing, MDPI, v. 13, n. 23, p. 4832, 2021.
106 SHARIF, M.; KHAN, M.; IQBAL, Z.; AZAM, M.; LALI, M. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture, Elsevier, v. 150, p. 220–234, 2018. Disponível em: <https: //www.sciencedirect.com/science/article/pii/S0168169917306373>.
107 SHARMA, A.; SINGH, V. Machine learning-based feature extraction techniques for epileptic seizure detection using eeg bio-signals. Naturalista Campano, Museo Naturalistico, 2024. Disponível em: <https://www.museonaturalistico.it/index. php/journal/article/view/259>.
108 SHARMA, V.; RESTREPO, M. I.; SARKAR, I. N. Solr-plant: efficient extraction of plant names from text. BMC Bioinformatics, v. 20, n. 1, p. 263, 2019. Disponível em: <https://doi.org/10.1186/s12859-019-2874-6>.
109 SHUKLA, A. K. Multi-population adaptive genetic algorithm for selection of microarray biomarkers. Neural Computing and Applications, v. 32, n. 15, p. 11897–11918, 8 2020. ISSN 1433-3058. Disponível em: <https: //doi.org/10.1007/s00521-019-04671-2>.
110 SIMON, S. M.; GLAUM, P.; VALDOVINOS, F. S. Interpreting random forest analysis of ecological models to move from prediction to explanation. Scientific Reports, v. 13, p. 3881, 2023. Disponível em: <https://doi.org/10.1038/ s41598-023-30313-8>.
111 SINHA, R.; CHAWLA, V.; PALWE, S.; SINGH, O. Prediction of chronic respiratory diseases using machine learning algorithms. In: Lecture Notes on Computing and Applications. Springer, 2024. Disponível em: <https://link.springer.com/chapter/10.1007/978-981-97-7571-2_2>.
112 SLENTER, D. N.; KUTMON, M.; HANSPERS, K. e. a. Wikipathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Research, 2018. Disponível em: <https://academic.oup.com/nar/ article-abstract/46/D1/D661/4612963>.
113 SMITH, T. F.; WATERMAN, M. S. et al. Identification of common molecular subsequences. Journal of molecular biology, Elsevier Science, v. 147, n. 1, p. 195–197, 1981.
114 SOLORIO-FERNáNDEZ, S.; CARRASCO-OCHOA, J. A.; MARTíNEZTRINIDAD, J. F. A review of unsupervised feature selection methods. Artificial Intelligence Review, v. 53, p. 907–948, 2018.
115 SONG, G.; WANG, Q. Species classification from hyperspectral leaf information using machine learning approaches. Ecological Informatics, Elsevier, v. 76, p. 102141, 2023.
116 STRODTHOFF, N.; WAGNER, P.; WENZEL, M.; SAMEK, W. Udsmprot: universal deep sequence models for protein classification. Bioinformatics, v. 36, n. 8, p. 2401–2409, 2020.
117 SUBANYA, B.; RAJALAXMI, R. R. Feature selection using artificial bee colony for cardiovascular disease classification. Proceedings of the International Conference on Electronics and Communication Systems, v. 1, p. 104–110, 2014.
118 TADIST et al. Feature selection methods and genomic big data: A systematic review. Journal of Big Data, Springer, v. 6, n. 1, p. 79, 2019.
119 TANG, J.; ALELYANI, S.; LIU, H. Feature selection for classification: A review. Data Classification: Algorithms and Applications, CRC Press, 2014. Disponível em: <https://www.math.chalmers.se/Stat/Grundutb/GU/MSA220/S18/featselect. pdf>.
120 TANG, J.; WANG, Y.; FU, J.; ZHOU, Y.; LUO, Y. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Briefings in Bioinformatics, Oxford University Press, v. 21, n. 4, p. 1378–1390, 2020.
121 TANG, X.; SHI, Z.; JIN, M. Multi-category multi-state information ensemble-based classification method for precise diagnosis of three cancers. Neural Computing and Applications, Springer, v. 33, n. 14, p. 15901–15917, 2021.
122 TIAN, F. e. a. Noncodev6: An updated database dedicated to long non-coding rna annotation in both animals and plants. Nucleic Acids Research, 2020. Disponível em: <https://academic.oup.com/nar/article-abstract/49/D1/D165/5983627>.
123 TIRELLI, T.; PESSANI, D. Importance of feature selection in decision-tree and artificial-neural-network ecological applications. alburnus alburnus alborella: A practical example. Ecological Informatics, Elsevier, v. 6, p. 309–315, 2011.
124 TOUKACH, P. V.; EGOROVA, K. S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Research, 2016. Disponível em: <https://academic.oup.com/nar/article-abstract/44/D1/D1229/2503128>.
125 TRACY, J. L.; TRABUCCO, A.; LAWING, A. M.; GIERMAKOWSKI, J. T. Random subset feature selection for ecological niche models of wildfire activity in western north america. Ecological Modelling, Elsevier, v. 386, p. 19–30, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S0304380018301868>.
126 TURLAND, N. J.; WIERSEMA, J. H.; BARRIE, F. R.; GREUTER, W.; HAWKSWORTH, D. L.; HERENDEEN, P. S.; KNAPP, S.; KUSBER, W.-H.; LI, D.-Z.; MARHOLD, K. et al. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. [S.l.]: Koeltz botanical books, 2018.
127 Uzma; AL-OBEIDAT, F.; TUBAISHAT, A.; SHAH, B.; HALIM, Z. Gene encoder: a feature selection technique through unsupervised deep learningbased clustering for large gene expression data. Neural Computing and Applications, v. 34, n. 11, p. 8309–8331, 6 2022. ISSN 1433-3058. Disponível em: <https://doi.org/10.1007/s00521-020-05101-4>.
128 VERMA, R. K.; LOKHANDE, K. B.; SRIVASTAVA, P. K.; SINGH, A. Elucidating b4galnt1 as potential biomarker in hepatocellular carcinoma using machine learning models and mutational dynamics explored through md simulation. Informatics in Medicine Unlocked, v. 48, p. 101514, 2024. ISSN 2352-9148. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2352914824000704>.
129 WAESE, J. e. a. eplant: Visualizing and exploring multiple levels of data for hypothesis generation in plant biology. The Plant Cell, 2017. Disponível em: <https://academic.oup.com/plcell/article-abstract/29/8/1806/6100398>.
130 WAN, C.; FREITAS, A. A.; MAGALHãES, J. P. D. Predicting the pro-longevity or anti-longevity effect of model organism genes with new hierarchical feature selection methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 12, n. 2, p. 262–275, 3 2015. ISSN 1545-5963. Disponível em: <https://doi.org/10.1109/TCBB.2014.2355218>.
131 WANG, J.; DONG, Y. Measurement of text similarity: A survey. Information, v. 11, n. 9, 2020. ISSN 2078-2489. Disponível em: <https://www.mdpi.com/ 2078-2489/11/9/421>.
132 WANG, L.; WANG, Y.; CHANG, Q. Feature selection methods for big data bioinformatics: A survey from the search perspective. Methods, Elsevier, v. 111, p. 21–31, 2016.
133 WHITTAKER, R.; ARAúJO, M.; JEPSON, P.; LADLE, R.; WATSON, J.; WILLIS, K. Conservation biogeography: Assessment and prospect. Diversity and Distributions, v. 11, p. 3–23, 2005.
134 WILSON, E. Biodiversity research requires more boots on the ground. Nature Ecology & Evolution, v. 1, p. 1590–1591, 2017.
135 XU, J.; ZHANG, Y.; MIAO, D. Three-way confusion matrix for classification: A measure driven view. Information Sciences, v. 530, p. 81–98, 2020.
136 XU, S. Bayesian naïve bayes classifiers to text classification. Journal of Information Science, SAGE Publications, v. 42, n. 5, p. 677–694, 2016.
137 YU, D.; LEE, S. J.; LEE, W. J.; KIM, S. C.; LIM, J.; KWON, S. W. Classification of spectral data using fused lasso logistic regression. Chemometrics and Intelligent Laboratory Systems, Elsevier, v. 142, p. 70–77, 2015.
138 YU, Z.; CHEN, H.; YOU, J.; WONG, H.-S.; LIU, J.; LI, L.; HAN, G. Double selection based semi-supervised clustering ensemble for tumor clustering from gene expression profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 11, n. 4, p. 727–740, 7 2014. ISSN 1545-5963. Disponível em: <https://doi.org/10.1109/TCBB.2014.2315996>.
139 ZAFARI, M.; SADEGHI-NIARAKI, A.; CHOI, S. M.; ESMAEILY, A. A practical model for the evaluation of high school student performance based on machine learning. Applied Sciences, v. 11, n. 23, 2021. Disponível em: <https://www.mdpi.com/2076-3417/11/23/11534/pdf>.
140 ZHENG, Y.; PENG, Y.; GAO, Y.; YANG, G.; JIANG, Y.; ZHANG, G.; WANG, L.; YU, J.; HUANG, Y.; WEI, Z.; LIU, J. Identification and dissection of prostate cancer grounded on fatty acid metabolism-correlative features for predicting prognosis and assisting immunotherapy. Computational Biology and Chemistry, v. 115, p. 108323, 2025. ISSN 1476-9271. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1476927124003116>.