SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Gabriel Kakimoto(g234878@dac.unicamp.br)
2 Seyed Haddadi(seyed@unicamp.br)
3 Fillipe Silva(f212148@dac.unicamp.br)
4 Patrick Araújo(p217144@dac.unicamp.br)
5 Marcelo Reis(msreis@unicamp.br)
6 Julio Dos Reis(jreis@ic.unicamp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alves, M., Macedo, M., Ribeiro, J., Mancine, L., and J´unior, C. P. (2024). Sentimentos em cena: uma an´alise dos coment´arios em trailers de filmes da netflix brasil no youtube. In Anais do XIII Brazilian Workshop on Social Network Analysis and Mining, pages 228–234, Porto Alegre, RS, Brasil. SBC.
2 Ara´ujo, M., Pereira, A., and Benevenuto, F. (2020). A comparative study of machine translation for multilingual sentence-level sentiment analysis. Information Sciences, 512:1078–1102.
3 Brum, H. B. and das Grac¸as Volpe Nunes, M. (2017). Building a sentiment corpus of tweets in brazilian portuguese. CoRR, abs/1712.08917.
4 Drus, Z. and Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review. Procedia Computer Science, 161:707–714. The Fifth Information Systems International Conference, 23-24 July 2019, Surabaya, Indonesia.
5 Franc¸a, T., Gomes, J., and Oliveira, J. (2017). A twitter opinion mining gold standard for brazilian uprising in 2013. In XXXII Simp´osio Brasileiro de Banco de Dados: Dataset Showcase Workshop, SBBD 2017 Companion, pages 182–192.
6 Hovy, E. and Lavid, J. (2010). Towards a ‘science’of corpus annotation: a new methodological challenge for corpus linguistics. International journal of translation, 22(1):13–36.
7 Liu, B. et al. (2010). Sentiment analysis and subjectivity. Handbook of natural language processing, 2(2010):627–666
8 Malo, P., Sinha, A., Takala, P., Korhonen, P., and Wallenius, J. (2013). Good debt or bad debt: Detecting semantic orientations in economic texts.
9 McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochem Med (Zagreb), 22(3):276–282.
10 Mohanty, A. and Cherukuri, R. C. (2023). Sentiment analysis on banking feedback and news data using synonyms and antonyms. International Journal of Advanced Com- puter Science & Applications, 14(12).
11 Pereira, D. A. (2021). A survey of sentiment analysis in the portuguese language. Artifi- cial Intelligence Review, 54(2):1087–1115.
12 Plotnikov, A., Shcheludyakov, A., Cherdantsev, V., Bochkarev, A., and Zagoruiko, I. (2020). Data on post bank customer reviews from web. Data in Brief, 32:106152.
13 Saragih, M. H. and Girsang, A. S. (2017). Sentiment analysis of customer engagement on social media in transport online. In 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pages 24–29.
14 Sousa, R. F. d., Brum, H. B., and Nunes, M. d. G. V. (2019). A bunch of helpfulness and sentiment corpora in brazilian portuguese. In Symposium in Information and Human Language Technology - STIL. SBC.
15 Souza, F., Nogueira, R., and Lotufo, R. (2020). Bertimbau: Pretrained bert models for brazilian portuguese. In Cerri, R. and Prati, R. C., editors, Intelligent Systems, pages 403–417, Cham. Springer International Publishing