1 |
Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., and Tang, N. (2016). Detecting data errors: Where are we and what needs to be done? PVLDB, 9(12):993–1004.
|
|
2 |
Arocena, P. C., Glavic, B., Mecca, G., Miller, R. J., Papotti, P., and Santoro, D. (2015). Messing up with BART: error generation for evaluating data-cleaning algorithms. PVLDB, 9(2):36–47.
|
|
3 |
Ilyas, I. F. and Chu, X. (2019). Data Cleaning. Association for Computing Machinery, New York, NY, USA.
|
|
4 |
Mahdavi, M., Abedjan, Z., Castro Fernandez, R., Madden, S., Ouzzani, M., Stonebraker, M., and Tang, N. (2019). Raha: A configuration-free error detection system. In ICDE, pages 865–882.
|
|
5 |
Mariet, Z., Harding, R., Madden, S., et al. (2016). Outlier detection in heterogeneous datasets using automatic tuple expansion. Technical report, MIT CSAIL.
|
|
6 |
Neutatz, F., Mahdavi, M., and Abedjan, Z. (2019). ED2: A case for active learning in error detection. In CIKM, pages 2249–2252.
|
|
7 |
Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017). Holoclean: Holistic data repairs with probabilistic inference. PVLDB, 10(11):1190–1201.
|
|