| 1 | Bishop, C. M. (1995). Training with Noise is Equivalent to Tikhonov Regularization. Neural Computation, 7(1):108–116. |  | 
																		
							| 2 | Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons. |  | 
																		
							| 3 | Capistrano, B., Chen, L., Ribeiro, M., Pacheco, C., Lobosco, D., Quadros, J., Barreto, M. I., and Ogasawara, E. (2023). Desafios na Predição do Consumo de Pesticidas em Escala Global Usando Aprendizado de Máquina. In Anais do Brazilian e-Science Workshop (BreSci), pages 33–38. SBC. |  | 
																		
							| 4 | Hastie, T. J. (2017). Generalized Additive Models. Routledge. |  | 
																		
							| 5 | Haykin, S. O. (2011). Neural Networks and Learning Machines. Pearson Education. |  | 
																		
							| 6 | Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. |  | 
																		
							| 7 | Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A., and Gómez-Canaval, S. (2023). Data Augmentation techniques in time series domain: a survey and taxonomy. Neural Computing and Applications, 35(14):10123 – 10145. |  | 
																		
							| 8 | Ogasawara, E., Castro, A., Borges, H., Carvalho, D., Santos, J., Bezerra, E., and Coutinho, R. (2023). daltoolbox: Leveraging Experiment Lines to Data Analytics. |  | 
																		
							| 9 | Ogasawara, E., Martinez, L. C., De Oliveira, D., Zimbrão, G., Pappa, G. L., and Mattoso, M. (2010). Adaptive Normalization: A novel data normalization approach for nonstationary time series. In Proceedings of the International Joint Conference on Neural Networks. |  | 
																		
							| 10 | Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088):533 – 536. |  | 
																		
							| 11 | Salles, R., Pacitti, E., Bezerra, E., Porto, F., and Ogasawara, E. (2022). TSPred: A framework for nonstationary time series prediction. Neurocomputing, 467:197 – 202. |  | 
																		
							| 12 | Um, T. T., Pfister, F. M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., and Kulic, D. (2017). Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks. In ICMI 2017 - Proceedings of the 19th ACM International Conference on Multimodal Interaction, volume 2017-January, pages 216 – 220 |  | 
																		
							| 13 | Wand, M. P. and Jones, M. C. (1994). Kernel Smoothing. CRC Press. |  | 
																		
							| 14 | Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50:159–175. |  |