SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Afonso Sousa Lima(afonso.matheus@usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Canali, S., Schiaffonati, V., and Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness.PLOS Digital Health, 1(10):e0000104.
2 Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., and Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big data, 8:1–37.
3 Getzen, E., Ungar, L., Mowery, D., Jiang, X., and Long, Q. (2023). Mining for equitable health: Assessing the impact of missing data in electronic health records. Journal of biomedical informatics, 139:104269.
4 Isgut, M., Gloster, L., Choi, K., Venugopalan, J., and Wang, M. D. (2022). Systematic review of advanced ai methods for improving healthcare data quality in post covid-19 era. IEEE Reviews in Biomedical Engineering, 16:53–69.
5 Lima, A. S. and Sousa, E. (2024). Handling missing values in data streams: An overview. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 750–756, Florianópolis, SC, Brasil. SBC.
6 Lin, S., Wu, X., Martinez, G., and Chawla, N. V. (2020). Filling missing values on wearable-sensory time series data. In Proceedings of the 2020 SIAM International Conference on Data Mining, pages 46–54. SIAM.
7 Mangussi, A. D., Santos, M. S., Lopes, F. L., Pereira, R. C., Lorena, A. C., and Abreu, P. H. (2024). mdatagen: A python library for generating missing data. https://arthurmangussi.github.io/pymdatagen/.
8 Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., Alavi, A., Celli, A., Higgs, E., Dagan-Rosenfeld, O., et al. (2020). Pre-symptomatic detection of covid-19 from smartwatch data. Nature biomedical engineering, 4(12):1208–1220.
9 Psychogyios, K., Ilias, L., Ntanos, C., and Askounis, D. (2023). Missing value imputation methods for electronic health records. IEEE Access, 11:21562–21574.
10 Ren, L., Wang, T., Seklouli, A. S., Zhang, H., and Bouras, A. (2023). A review on missing values for main challenges and methods. Information Systems, page 102268.
11 Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., and Abreu, P. H. (2019). Generating synthetic missing data: A review by missing mechanism. IEEE Access, 7:11651–11667.