1 |
Barros, P.V.S., Monteiro, J.M., Brayner, A., and Machado, J.C. (2024). Incorporando os requisitos e as restrições da lgpd ao projeto de banco de dados. In SBBD’24, pages 341–353. SBC.
|
|
2 |
Bauer, D., Giblin, C., Garcés-Erice, L., Pardon, N., Rooney, S., Toniato, E., and Urbanetz, P. (2022). Revisiting data lakes: the metadata lake. In Middleware’22, page 8–14, New York, NY, USA.
|
|
3 |
Becker, B. and Kohavi, R. (1996). Adult. UCI Machine Learning Repository. DOI:https://doi.org/10.24432/C5XW20.
|
|
4 |
Deshpande, A. (2021). Sypse: privacy-first data management through pseudonymization and partitioning. In CIDR, pages 1–8, Chaminade, CA.
|
|
5 |
Domingo-Ferrer, J. and Torra, V. (2005). Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Mining and Knowledge Discovery, 11(2):195–212.
|
|
6 |
Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In TCC 2006, volume 3876, pages 265–284. Springer.
|
|
7 |
Francis, P., Probst-Eide, S., Obrok, P., Berneanu, C., Juric, S., and Munz, R. (2018). Diffixbirch: Extending diffix-aspen. arXiv preprint arXiv:1806.02075.
|
|
8 |
Giomi, M., Boenisch, F., Wehmeyer, C., and Tasnádi, B. (2023). A unified framework for quantifying privacy risk in synthetic data. Proceedings on Privacy Enhancing Technologies, 2023(2):312–328.
|
|
9 |
Machado, J. C. and Amora, P. R. (2021). The impact of privacy regulations on db systems. Journal of Information and Data Management, 12(5).
|
|
10 |
Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3–es.
|
|
11 |
Miguel, J., Pereira, M. J., Henriques, P., and Berón, M. (2019). Assuring data privacy with privas – a tool for data publishers. IADIS International Journal on Computer Science and Information Systems, 14(2):41–58.
|
|
12 |
Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. (2019). Data lake management: Challenges and opportunities. Proc. VLDB Endow., 12(12):1986–1989.
|
|
13 |
Ogasawara, E., Paulino, C., Murta, L., Werner, C., and Mattoso, M. (2009). Experiment line: software reuse in scientific workflows. In Proc. of the SSDBM 2009, pages 264–272, Berlin. Springer.
|
|
14 |
Oreščanin, D., Hlupić, T., and Vrdoljak, B. (2024). Managing personal identifiable information in data lakes. IEEE access, 12:32164–32180.
|
|
15 |
Poulis, G., Gkoulalas-Divanis, A., Loukides, G., Skiadopoulos, S., and Tryfonopoulos, C. (2014). SECRETA: A system for evaluating and comparing relational and transaction anonymization algorithms. In EDBT’14, pages 620–623.
|
|
16 |
Prasser, F., Eicher, J., Spengler, H., Bild, R., and Kuhn, K.A. (2020). Flexible data anonymization using arx—current status and challenges ahead. Software: Pract. and Exp., 50(7):1277–1304.
|
|
17 |
Sweeney, L. (2002). k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570.
|
|
18 |
Terrovitis, M., Liagouris, J., Mamoulis, N., and Skiadopoulos, S. (2012). Privacy preservation by disassociation. arXiv preprint arXiv:1207.0135.
|
|
19 |
Zigomitros, A., Casino, F., Solanas, A., and Patsakis, C. (2020). A survey on privacy properties for data publishing of relational data. Ieee Access, 8:51071–51099.
|
|