1 |
Ads, Z. et al. (2024). Risk-aware accelerated federated learning over heterogeneous wireless networks. arXiv preprint arXiv:2401.09267.
|
|
2 |
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Kwing, H. L., Parcollet, T., Gusmão, P. P. d., and Lane, N. D. (2020). Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.
|
|
3 |
Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.
|
|
4 |
Brownlee, J. (2018). Statistical Methods for Machine Learning. Machine Learning Mastery.
|
|
5 |
Chen, S. et al. (2021). Risk-aware federated learning in crowdsensing systems. arXiv preprint arXiv:2101.01266.
|
|
6 |
Dincer, B., Zhu, Y., Craswell, N., and Zhang, M. (2016). Risk-sensitive evaluation and learning to rank using multiple baselines. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 483–492.
|
|
7 |
Divi, S., Lin, Y.-S., Farrukh, H., and Celik, Z. B. (2021). New metrics to evaluate the performance and fairness of personalized federated learning.
|
|
8 |
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
|
|
9 |
Hejazinia, M. et al. (2022). Fel: High capacity learning for recommendation and ranking via federated ensemble learning. arXiv preprint arXiv:2206.03852.
|
|
10 |
Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446.
|
|
11 |
Jeong, J., Kim, H., Park, J., Lee, S., and Yoon, D. N. (2022). Fedcc: Boosting robustness of federated learning against model poisoning attacks. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 861–875. ACM.
|
|
12 |
Jiang, J. C., Kantarci, B., Oktug, S., and Soyata, T. (2020). Federated learning in smart city sensing: Challenges and opportunities. Sensors, 20(21):6230.
|
|
13 |
Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S. U., and Suresh, A. T. (2020). Scaffold: Stochastic controlled averaging for federated learning. In International Con- ference on Machine Learning (ICML).
|
|
14 |
Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., and Kramer, S. (2019). Pairwise learning to rank by neural networks revisited: Reconstruction, theoretical analysis and practical performance. arXiv preprint arXiv:1909.02768.
|
|
15 |
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Systems, pages 429–450.
|
|
16 |
Liu, S., Celik, E., and Widmer, J. (2021). Label-aware aggregation for improved federated learning. In Proceedings of the 2021 20th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 1–13. IEEE.
|
|
17 |
Neto, H. N. C., Mattos, D. M. F., and Fernandes, N. C. (2020). Privacidade do usuário em aprendizado colaborativo: Federated learning, da teoria à prática. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSEG).
|
|
18 |
Qin, T. and Liu, T. (2013). Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597.
|
|
19 |
Rodrigues, P. H. S., de Sousa, D. X., França, C., Rabbi, G., Couto Rosa, T., and Gonçalves, M. A. (2025). Risk-sensitive optimization of neural deep learning ranking models with applications in ad-hoc retrieval and recommender systems. Information Processing & Management, 62(4):104126.
|
|
20 |
Rodrigues, P. H. S., Xavier Sousa, D., Couto Rosa, T., and Gonçalves, M. A. (2022). Risk-sensitive deep neural learning to rank. In ACM SIGIR Conference, SIGIR ’22, page 803–813.
|
|
21 |
Spiegelhalter, D. (2024). The Art of Uncertainty: How to Navigate Chance, Ignorance, Risk and Luck. Pelican Books.
|
|
22 |
Tong, Y. et al. (2021). An efficient approach for cross-silo federated learning to rank. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).
|
|
23 |
Voorhees, E. M. (1999). The trec-8 question answering track report. In Proceedings of the Eighth Text Retrieval Conference (TREC-8). National Institute of Standards and Technology (NIST).
|
|
24 |
Voorhees, E. M. et al. (1999). The trec-8 question answering track report. In TREC, volume 8.
|
|
25 |
Wang, J. and Liu, M. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. In NeurIPS.
|
|
26 |
Wang, L., Bennett, P. N., and Collins-Thompson, K. (2012). Robust ranking models via risk-sensitive optimization. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’12, page 761–770, New York, NY, USA. Association for Computing Machinery.
|
|
27 |
Wang, S. and Zuccon, G. (2022). Is non-iid data a threat in federated online learning to rank? In ACM SIGIR Conference, SIGIR ’22, page 2801–2813.
|
|
28 |
Wang, Y., Li, T.-Y., Wang, D., and Zhu, M. (2013). A theoretical analysis of ndcg type ranking measures. Journal of Machine Learning Research, 14:25–54.
|
|
29 |
Zhao, S. et al. (2024). Federated risk-aware learning with central sensitivity estimation. arXiv preprint arXiv:2502.17694.
|
|