SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Gestefane Rabbi(gestefane@dcc.ufmg.br)
2 Celso França(celsofranca@dcc.ufmg.br)
3 Daniel Sousa(daniel.sousa@ifg.edu.br)
4 Thierson Rosa(thierson@inf.ufg.br)
5 Jussara Almeida(jussara@dcc.ufmg.br)
6 Marcos André Gonçalves(mgoncalv@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Ads, Z. et al. (2024). Risk-aware accelerated federated learning over heterogeneous wireless networks. arXiv preprint arXiv:2401.09267.
2 Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Kwing, H. L., Parcollet, T., Gusmão, P. P. d., and Lane, N. D. (2020). Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.
3 Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.
4 Brownlee, J. (2018). Statistical Methods for Machine Learning. Machine Learning Mastery.
5 Chen, S. et al. (2021). Risk-aware federated learning in crowdsensing systems. arXiv preprint arXiv:2101.01266.
6 Dincer, B., Zhu, Y., Craswell, N., and Zhang, M. (2016). Risk-sensitive evaluation and learning to rank using multiple baselines. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 483–492.
7 Divi, S., Lin, Y.-S., Farrukh, H., and Celik, Z. B. (2021). New metrics to evaluate the performance and fairness of personalized federated learning.
8 Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
9 Hejazinia, M. et al. (2022). Fel: High capacity learning for recommendation and ranking via federated ensemble learning. arXiv preprint arXiv:2206.03852.
10 Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446.
11 Jeong, J., Kim, H., Park, J., Lee, S., and Yoon, D. N. (2022). Fedcc: Boosting robustness of federated learning against model poisoning attacks. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 861–875. ACM.
12 Jiang, J. C., Kantarci, B., Oktug, S., and Soyata, T. (2020). Federated learning in smart city sensing: Challenges and opportunities. Sensors, 20(21):6230.
13 Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S. U., and Suresh, A. T. (2020). Scaffold: Stochastic controlled averaging for federated learning. In International Con- ference on Machine Learning (ICML).
14 Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., and Kramer, S. (2019). Pairwise learning to rank by neural networks revisited: Reconstruction, theoretical analysis and practical performance. arXiv preprint arXiv:1909.02768.
15 Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Systems, pages 429–450.
16 Liu, S., Celik, E., and Widmer, J. (2021). Label-aware aggregation for improved federated learning. In Proceedings of the 2021 20th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 1–13. IEEE.
17 Neto, H. N. C., Mattos, D. M. F., and Fernandes, N. C. (2020). Privacidade do usuário em aprendizado colaborativo: Federated learning, da teoria à prática. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSEG).
18 Qin, T. and Liu, T. (2013). Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597.
19 Rodrigues, P. H. S., de Sousa, D. X., França, C., Rabbi, G., Couto Rosa, T., and Gonçalves, M. A. (2025). Risk-sensitive optimization of neural deep learning ranking models with applications in ad-hoc retrieval and recommender systems. Information Processing & Management, 62(4):104126.
20 Rodrigues, P. H. S., Xavier Sousa, D., Couto Rosa, T., and Gonçalves, M. A. (2022). Risk-sensitive deep neural learning to rank. In ACM SIGIR Conference, SIGIR ’22, page 803–813.
21 Spiegelhalter, D. (2024). The Art of Uncertainty: How to Navigate Chance, Ignorance, Risk and Luck. Pelican Books.
22 Tong, Y. et al. (2021). An efficient approach for cross-silo federated learning to rank. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).
23 Voorhees, E. M. (1999). The trec-8 question answering track report. In Proceedings of the Eighth Text Retrieval Conference (TREC-8). National Institute of Standards and Technology (NIST).
24 Voorhees, E. M. et al. (1999). The trec-8 question answering track report. In TREC, volume 8.
25 Wang, J. and Liu, M. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. In NeurIPS.
26 Wang, L., Bennett, P. N., and Collins-Thompson, K. (2012). Robust ranking models via risk-sensitive optimization. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’12, page 761–770, New York, NY, USA. Association for Computing Machinery.
27 Wang, S. and Zuccon, G. (2022). Is non-iid data a threat in federated online learning to rank? In ACM SIGIR Conference, SIGIR ’22, page 2801–2813.
28 Wang, Y., Li, T.-Y., Wang, D., and Zhu, M. (2013). A theoretical analysis of ndcg type ranking measures. Journal of Machine Learning Research, 14:25–54.
29 Zhao, S. et al. (2024). Federated risk-aware learning with central sensitivity estimation. arXiv preprint arXiv:2502.17694.