SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Luciano Espiridião(luciano.espiridiao@ifmg.edu.br)
2 Laura Dias(laura.lima1@aluno.ufop.edu.br)
3 Anderson Ferreira(anderson.ferreira@ufop.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.
2 Cheng, Y., Chen, Z.,Wang, J., Agrawal, A., and Choudhary, A. (2013). Bootstrapping Active Name Disambiguation with Crowdsourcing. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, CIKM ’13, pages 1213–1216, New York, NY, USA. Association for Computing Machinery.
3 Cota, R. G., Gonc¸alves, M. A., and Laender, A. H. F. (2007). A Heuristic-based Hierarchical Clustering Method for Author Name Disambiguation in Digital Libraries. In Proceedings of the XXII Brazilian Symposium on Databases, pages 20–34, Jo˜ao Pessoa, Paraiba, Brazil.
4 Ferreira, A. A., Gonc¸alves, M. A., Almeida, J. M., Laender, A. H., and Veloso, A. (2012a). A tool for generating synthetic authorship records for evaluating author name disambiguation methods. Information Sciences, 206:42–62.
5 Ferreira, A. A., Gonc¸alves, M. A., and Laender, A. H. F. (2012b). A Brief Survey of Automatic Methods for Author Name Disambiguation. SIGMOD Record, 41(2):15– 26.
6 Ferreira, A. A., Gonc¸alves, M. A., and Laender, A. H. F. (2020). Automatic disambiguation of author names in bibliographic repositories. Synthesis Lectures on Information Concepts, Retrieval, and Services, 12(1):1–146.
7 Han, H., Giles, C. L., Zha, H., Li, C., and Tsioutsiouliklis, K. (2004). Two supervised learning approaches for name disambiguation in author citations. In Proceedings of the 4th JCDL, pages 296–305, Tucson, USA.
8 Hussain, I. and Asghar, S. (2017). A survey of author name disambiguation techniques: 2010-2016. The Knowledge Engineering Review, 32:1–24.
9 Kang, I.-S., Kim, P., Lee, S., Jung, H., and You, B.-J. (2011). Construction of a large-scale test set for author disambiguation. IP&M, 47:452–465.
10 Kim, J. (2019). A fast and integrative algorithm for clustering performance evaluation in author name disambiguation. Scientometrics, 120(2):661–681.
11 Kim, J. and Kim, J. (2018). The impact of imbalanced training data on machine learning for author name disambiguation. Scientometrics, 117:511–526.
12 Kobayashi, S. (2018). Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations. CoRR, 2:452–457.
13 Lapidot, I. (2002). Self-Organizing-Maps with BIC for Speaker Clustering. Technical report, IDIAP Research Institute, Martigny, Switzerland.
14 Muller, M. C., Reitz, F., and Roy, N. (2017). Data sets for author name disambiguation: an empirical analysis and a new resource. Scientometrics, 111:1467–1500.
15 Oliveira, J. W. A. (2005). Uma estrat´egia para remoc¸ ˜ao de ambiguidades na identificac¸ ˜ao de autoria de objetos bibliogr´aficos. Master’s thesis, Uiversidade Federal de Minas Gerais. Departamento de Ciˆencia da Computac¸ ˜ao, Belo Horizonte, Brazil.
16 Santana, A. F., Gonc¸alves, M. A., Laender, A. H. F., and Ferreira, A. A. (2017). Incremental author name disambiguation by exploiting domain-specific heuristics. Journal of the Association for Information Science and Technology, 68(4):931–945.
17 Sanyal, D. K., Bhowmick, P. K., and Das, P. P. (2019). A review of author name disambiguation techniques for the PubMed bibliographic database. Journal of Information Science, 47(2):227–254.
18 Wang,W. Y. and Yang, D. (2015). That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets. In Proceedings of the EMNLP, pages 2557– 2563, Lisbon, Portugal. Association for Computational Linguistics.
19 Wei, J. and Zou, K. (2019). EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings of the EMNLP-IJCNLP, pages 6382–6388, Hong Kong, China. Association for Computational Linguistics.
20 Zhang, X., Zhao, J., and LeCun, Y. (2016). Character-level Convolutional Networks for Text Classification. In Proceedings of the NIPS, pages 649–657, Cambridge, MA.