1 |
Assireu, A. T., Fisch, G., Carvalho, V. S. O., Pimenta, F. M., de Freitas, R. M., Saavedra,
O. R., Neto, F. L. A., J´unior, A. R. T., Oliveira, D. Q., Lopes, D. C. P., de Lima, S. L.,
Marcondes, L. G. P., and Rodrigues, W. K. S. (2024). Sea breeze-driven effects on
wind down-ramps: Their implications for wind farms along the north-east coast of
brazil. Energy, 294:130804.
|
|
2 |
Boettiger, C. (2015). An introduction to docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1):71–79.
|
|
3 |
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series
Analysis: Forecasting and Control. Wiley, 5 edition.
|
|
4 |
Chastre, C. and L´ucio, V. (2012). Torres pr´e-fabricadas de bet˜ao para suporte de turbinas
e´olicas. In Estruturas pr´e-moldadas no mundo – Aplicac¸ ˜oes e comportamento estru-
tural, pages 91–106. Universidade NOVA de Lisboa.
|
|
5 |
Cielen, D., Meysman, A. D. B., and Ali, M. (2021). Data Science: Principles and Prac-
tice. Manning Publications.
|
|
6 |
Elsaraiti, M. and Merabet, A. (2021). A comparative analysis of the arima and lstm predic-
tive models and their effectiveness for predicting wind speed. Energies, 14(20):6782.
|
|
7 |
Epstein, B. and Roberts, P. (2022). Accelerate Machine Learning with a Unified Analytics
Architecture. O’Reilly Media, Inc., Sebastopol, CA, USA.
|
|
8 |
Fard, A., Zhang, B., Katepalli, K., Stonebraker, M., and Rundensteiner, E. A. (2020).
Vertica-ml: Distributed machine learning in vertica database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, pages 755–
768. ACM.
|
|
9 |
Grigonyt˙e, E. and Butkeviˇci¯ut˙e, E. (2016). Short-term wind speed forecasting using arima
model. Energetika, 62(1–2):17–26.
|
|
10 |
Hyndman, R. J. and Athanasopoulos, G. (2021). Forecasting: Principles and Practice.
OTexts, Melbourne, Australia, 3 edition. Accessed on March 26, 2025.
|
|
11 |
Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., and Bear, C.
(2012). The vertica analytic database: C-store 7 years later. Vertica Systems, An HP
Company.
|
|
12 |
Liu, X., Lin, Z., and Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal
arima-a comparison against gru and lstm. Energy, 227:120492.
|
|
13 |
Lustosa, H., Costa, F., Guimar˜aes, J., and de Oliveira, D. (2020). Savime: An array dbms
for simulation analysis and ml models predictions. In International Conference on
Database and Expert Systems Applications, pages 357–367. Springer.
|
|
14 |
Raschka, S., Patterson, J., and Nolet, C. (2020). Machine learning in python: Main
developments and technology trends in data science, machine learning, and artificial
intelligence. Information, 11(4):193.
|
|
15 |
Salman, A. G. and Kanigoro, B. (2021). Visibility forecasting using autoregressive inte-
grated moving average (arima) models. Procedia Computer Science, 181:586–593.
|
|
16 |
ertica (2025). Arima - vertica 25.1.x documentation. Accessed: March 26, 2025.
|
|