1 |
Almeida, F. V., Bueno, W. M., Miyaji, R. O., and Corrêa, P. L. P. (2021). Experimento de
modelagem de distribuição de espécies baseada em variáveis ambientais e de aerossóis
na região próxima a manaus (am). In Anais do XII Workshop de Computação Aplicada
à Gestão do Meio Ambiente e Recursos Naturais. SBC.
|
|
2 |
Beery, S., Cole, E., Parker, J., Perona, P., and Winner, K. (2021). Species distribution modeling for machine learning practitioners: A review. In Proceedings of ACM SIGCAS
Conference on Computing and Sustainable Societies (COMPASS) 2021.
|
|
3 |
Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In
Proceedings of 26th International Conference on Machine Learning. ACM.
|
|
4 |
Di Lorenzo, B., Farcomeni, A., and Golini, N. (2011). A bayesian model for presenceonly semicontinuous data, with application to prediction of abundance of taxus baccata
in two italian regions. Journal of Agriculture Biological and Environmental Statistics,
16:339–356.
|
|
5 |
Elcan, K. (2001). The foundations of cost-sensitive learning. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01).
|
|
6 |
Elcan, K. and Noto, K. (2008). Learning classifiers from only positive and unlabeled data.
In Proceedings of the SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD) 2008.
|
|
7 |
Forman, G. (2005). Counting positives accurately despite inaccurate classification. In
Proceedings of the 16th European Conference on Machine Learning
|
|
8 |
GBIF (2023). Gbif | global biodiversity information facility. https://www.gbif.org/.
Acesso em: 2023-05-14
|
|
9 |
Golini, N. (2011). Bayesian Modelling of Presence-only Data. PhD thesis, Spienza
Universidade de Roma.
|
|
10 |
Hamid, O. H. (2022). From model-centric to data-centric ai: A paradigm shift or rather
a complementary approach? In Proceedings of 2022 8th International Conference on
Information Technology Trends (ITT), pages 45–54. IEE
|
|
11 |
Hegel, T. M., Cushman, A., Evans, J., and Huetmann, F. (2010). Spatial Complexity,
Informatics and Wildlife Conservation, chapter Current State of the Art for Statistical
Modelling of Species Distributions. Springer.
|
|
12 |
Hernandez, P. A., Graham, C. H., Master, L. L., and Albert, D. L. (2006). The effect of
sample size and species characteristics on performance of different species distribution
modeling methods. Ecography, 29(5):773–785.
|
|
13 |
Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Applications to nonorthogonal
problems. Technometrics, 12(1):69–82.
|
|
14 |
Huang, J., Qu, L., Jia, R., and Zhao, B. (2019). O2u-net: A simple noisy label detection
approach for deep neural networks. In Proceedings of the International Conference on
Computer Vision (ICCV) 2019.
|
|
15 |
Hutchinson, G. E. (1991). Population studies: Animal ecology and demography. Bulletin
of Mathematical Biology, 53(1-2):193–213.
|
|
16 |
ICMBio (2023). Portal da biodiversidade do instituto chico mendes de conservação da biodiversidade. https://portaldabiodiversidade.icmbio.gov.br/portal/. Acesso em: 2023-
05-14.
|
|
17 |
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical
Learning. Springer, Londres.
|
|
18 |
Johnson, R., Chawla, N., and Hellmann, J. (2012). Species distribution modeling and
prediction: A class imbalance problem. pages 9–16.
|
|
19 |
Lipton, Z., Wang, Y., and Smola, A. (2018). Detecting and correcting for label shift
with black box predictors. In Proceedings of the International Conference on Machine
Learning (ICML) 2018.
|
|
20 |
Marsh, J. C., Gavish, Y., Kuemmerlen, M. C., Stoll, S., Haase, P., and Kunin, W. E.
(2023). Sdm profiling: A tool for assessing the information-content of sampled and
unsampled locations for species distribution models. Ecological Modelling, 475(1).
|
|
21 |
Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F. d., Schumacher,
C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., et al. (2017). The green ocean
amazon experiment (goamazon2014/5) observes pollution affecting gases, aerosols,
clouds, and rainfall over the rain forest. Bulletin of the American Meteorological Society, 98(5):981–997.
|
|
22 |
Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F. d., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H., Fan, J., et al. (2016). Introduction:
observations and modeling of the green ocean amazon (goamazon2014/5). Atmospheric Chemistry and Physics, 16(8):4785–4797.
|
|
23 |
Martin, T. G., Kuhnert, P. M., Mengersen, K., and Possingham, H. P. (2005). The power
of expert opinion in ecological models using bayesian methods: Impact of grazing on
birds. Ecological Applications, 15:266–280.
|
|
24 |
Mateo, R. G., Vanderpoorten, A., Muñoz, J., Laenen, B., and Désamoré, A. (2013). Modeling species distributions from heterogeneous data for the biogeographic regionalization of the european bryophyte flora. PLoS One, 8(2):e55648.
|
|
25 |
Miyaji, R. O., Bauer, L. O., Ferrari, V. M., Almeida, F. V., Corrêa, P. L. P., and Rizzo,
L. V. (2021). Interpolação espacial de variáveis ambientais e aerossóis na região da
bacia amazônica próxima a manaus-am. In Anais do XII Workshop de Computação
Aplicada à Gestão do Meio Ambiente e Recursos Naturais. SBC.
|
|
26 |
Miyaji, R. O. and Corrêa, P. L. P. (2021). Handling uncertainty through bayesian inference for species distribution modelling in the amazon basin region. In 2021: ANAIS
DO XVIII ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL
|
|
27 |
Northcutt, C. G., Athalye, A., and Mueller, J. (2021a). Pervasive label errors in test
sets destabilize machine learning benchmarks. In Proceedings of 35th Conference on
Neural Information Processing Systems (NeurIPS 2021).
|
|
28 |
Northcutt, C. G., Jiang, L., and Chuang, I. L. (2021b). Confident learning: Estimating uncertainty in dataset labels. Journal of Artificial Intelligence Research (JAIR),
70(1):1373–1411.
|
|
29 |
Pinaya, J. and Corrêa, P. (2014). Metodologia para definição das atividades do processo
de modelagem de distribuição de espécies. In Anais do V Workshop de Computação
Aplicada a Gestão do Meio Ambiente e Recursos Naturais, pages 45–54, Porto Alegre,
RS, Brasil. SBC.
|
|
30 |
The Imbalanced-learn Developers (2021). Imbalanced-learn documentation. https:
//imbalanced-learn.org/stable/. Acesso em: 14/05/2023.
|
|
31 |
Tibshirani, R. (1996). Regression shrinkage and selection via lasso. Journal of the Royal
Statistical Society, 58(1):267–288.
|
|