1 |
Bindschaedler, V., Shokri, R., and Gunter, C. A. (2017). Plausible deniability for privacypreserving data synthesis. Proc. VLDB Endow., 10(5):481–492.
|
|
2 |
Cao, J., Carminati, B., Ferrari, E., and Tan, K. L. (2011). Castle: Continuously anonymizing data streams. IEEE Transactions on Dependable and Secure Computing, 8(3):337–352.
|
|
3 |
Chen, R., Mohammed, N., Fung, B. C. M., Desai, B. C., and Xiong, L. (2011). Publishing set-valued data via differential privacy. PVLDB, 4(11):1087–1098.
|
|
4 |
Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407.
|
|
5 |
Backblaze (2017). The raw hard drive test data from 2017-01-01 to 2017-01-31. Online at https://www.backblaze.com/b2/hard-drive-test-data. html. acessed 2018-04-22.
|
|
6 |
Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. d., and Gama, J. a. (2013). Data stream clustering: A survey. ACM Comput. Surv., 46(1):13:1– 13:31.
|
|
7 |
Soria-Comas, J. and Domingo-Ferrer, J. (2017). Differentially private data sets based on microaggregation and record perturbation. In MDAI 2017, Kitakyushu, Japan, October, 2017, Proceedings, pages 119–131.
|
|
8 |
Soria-Comas, J., Domingo-Ferrer, J., Sanchez, D., and Mart ´ ´ınez, S. (2014). Enhancing data utility in differential privacy via microaggregation-based k-anonymity. The VLDB Journal, 23(5):771–794.
|
|
9 |
Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570.
|
|
10 |
Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., and Winslett, M. (2013). Differentially private histogram publication. The VLDB Journal, 22(6):797–822.
|
|
11 |
Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D., and Xiao, X. (2017). Privbayes: Private data release via bayesian networks. ACM Trans. Database Syst., 42(4):25:1– 25:41
|
|