1 |
Ban, N., Rajczak, J., Schmidli, J., and Schär, C. (2020). Analysis of alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dynamics, 55:61–75.
|
|
2 |
Davison, A. and Huser, R. (2015). Statistics of extremes. Annual Review of Statistics and Its Application, 2(1):203–235.
|
|
3 |
dos Reis, C. J., Souza, A., Graf, R., Kossowski, T. M., Abreu, M. C., de Oliveira-Júnior, J. F., and Fernandes, W. A. (2022). Modeling of the air temperature using the extreme value theory for selected biomes in mato grosso do sul (brazil). Stochastic Environmental Research and Risk Assessment.
|
|
4 |
Lima, A. O., Lyra, G. B., Abreu, M. C., Oliveira-Júnior, J. F., Zeri, M., and Cunha-Zeri, G. (2021). Extreme rainfall events over Rio de Janeiro State, Brazil: Characterization using probability distribution functions and clustering analysis. Atmospheric Research, 247:105221.
|
|
5 |
Luiz-Silva, W.and Oscar-Júnior, A. (2022). Climate extremes related with rainfall in the state of rio de janeiro, brazil: a review of climatological characteristics and recorded trends. Nat Hazards.
|
|
6 |
Lyra, G., Correia, T., Oliveira-Júnior, J., and Zeri, M. (2018). Evaluation of methods of spatial interpolation for monthly rainfall data over the state of rio de janeiro, brazil. Theoretical and Applied Climatology, 134.
|
|
7 |
Silva, W. and Dereczynski, C. (2014). Caracterização climatológica e tendências observadas em extremos climáticos no estado do rio de janeiro. Anuário do Instituto de Geociências UFRJ, 2(37):123–138.
|
|
8 |
Álvaro José Back and Bonfante, F. M. (2021). Evaluation of generalized extreme value and gumbel distributions for estimating maximum daily rainfall. Brazilian Journal of Environmental Sciences, 56(4):654–664.
|
|