1 |
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’19, page 2623–2631, New York, NY, USA. Association for Computing Machinery.
|
|
2 |
Bukhari, A., Hosseinimotlagh, S., and Kim, H. (2024). Opensense: An open-world sens-
ing framework for incremental learning and dynamic sensor scheduling on embedded
edge devices. IEEE Internet of Things Journal, 11(15):25880–25894.
|
|
3 |
Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020).
Autogluon-tabular.
|
|
4 |
Guo, S., Gu, Y., Wen, S., Ma, Y., Chen, Y., Wang, J., and Hu, C. (2022). Kici: A
knowledge importance based class incremental learning method for wearable activity
recognition. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, CIKM ’22, page 646–655, New York, NY, USA. Associ-
ation for Computing Machinery.
|
|
5 |
Helmi, A. M., Al-qaness, M. A. A., Dahou, A., Damaˇseviˇcius, R., Krilaviˇcius , T., and
Elaziz, M. A. (2021). A novel hybrid gradient-based optimizer and grey wolf optimizer
feature selection method for human activity recognition using smartphone sensors. En-
tropy, 23(8).
|
|
6 |
Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011). Activity recognition using cell
phone accelerometers. SIGKDD Explor. Newsl., 12(2):74–82.
|
|
7 |
Liu, M., Bian, S., Zhou, B., and Lukowicz, P. (2024). ikan: Global incremental learning
with kan for human activity recognition across heterogeneous datasets. In Proceedings
of the 2024 ACM International Symposium on Wearable Computers, ISWC ’24, page
89–95, New York, NY, USA. Association for Computing Machinery.
|
|
8 |
Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., and Jones, N. S.
(2019). catch22: Canonical time-series characteristics. Data Mining and Knowledge
Discovery, 33(6):1821–1852.
|
|
9 |
Middlehurst, M., Large, J., and Bagnall, A. (2020). The canonical interval forest (cif)
classifier for time series classification. In 2020 IEEE international conference on big
data (big data), pages 188–195. IEEE.
|
|
10 |
Niedoba, T., Surowiak, A., Hassanzadeh, A., and Khoshdast, H. (2023). Evaluation of the
effects of coal jigging by means of kruskal–wallis and friedman tests. Energies, 16(4).
|
|
11 |
Ohwosoro, I., Edje, A., and Ogeh, C. (2024). A hybrid assault detection system using
random forest enabled xgboost-lightgbm technique. Nigerian Journal of Science and
Environment, 22(2):177–189.
|
|
12 |
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and ´Edouard Duchesnay (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(85):2825–2830.
|
|
13 |
Reiss, A. (2012). PAMAP2 Physical Activity Monitoring. UCI Machine Learning Repos-
itory. DOI: https://doi.org/10.24432/C5NW2H.
|
|
14 |
Sousa, T., Cruz, L., Souza, C., Magalhães, R., and Macêdo, J. (2025). Enhancing har novelty detection with activity confusion analysis and clustering. In Anais do XXV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 12–23, Porto Alegre, RS, Brasil. SBC.
|
|
15 |
Tahir, S. B. u. d., Dogar, A. B., Fatima, R., Yasin, A., Shafiq, M., Khan, J. A., Assam,
M., Mohamed, A., and Attia, E.-A. (2022). Stochastic recognition of human physical
activities via augmented feature descriptors and random forest model. Sensors, 22(17).
|
|
16 |
Tseng, Y.-H. and Wen, C.-Y. (2023). Hybrid learning models for imu-based har with
feature analysis and data correction. Sensors, 23(18).
|
|
17 |
Valerio, A., Demarchi, D., O’Flynn, B., and Tedesco, S. (2024). Development of a person-
alized anomaly detection model to detect motion artifacts over ppg data using catch22
features. In 2024 IEEE SENSORS, pages 1–4.
|
|