SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Ricardo Barcelar(ricardo.barcelar@sou.ufmt.br)
2 Flávia Luis(flavia.luis@sou.ufmt.br)
3 Claudia Martins(claudia@ic.ufmt.br)
4 Raphael Gomes(raphael@ic.ufmt.br)
5 Anderson Oliveira(anderson.oliveira@ufmt.br)
6 Thiago Ventura(thiago@ic.ufmt.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 ANDRADE, Rafael Lara Mazoni; FARIA, Bruno Lopes de. COVID-19 E Clusters De Homicídios em Belo Horizonte: Análise Dos Impactos da Pandemia Sobre A Distribuição Espacial de Crimes. Caderno de Geografia, Belo Horizonte, v. 33, n. 73, p. 489, 2023. DOI: 10.5752/P.2318-2962.2023v33n73p489.
2 AGGARWAL, C. C.; ZHAI, C. A survey of text clustering algorithms. In: AGGARWAL, C. C.; ZHAI, C. (ed.). Mining text data. Boston: Springer, p. 77-128, 2012. DOI: 10.1007/978-1-4614-3223-4_4
3 BELLMAN, R. Dynamic programming. Princeton: Princeton University Press, 1957
4 CHAINEY, S.; RATCLIFFE, J. GIS and crime mapping. Chichester: John Wiley & Sons, 2013. DOI: 10.1007/978-1-4614-5690-2_317
5 JAIN, A. K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, v. 31, n. 8, p. 651-666, 2010. DOI: 10.1016/j.patrec.2009.09.011
6 JÁÑEZ-MARTINO, Francisco; ALAIZ-RODRÍGUEZ, Rocío; GONZÁLEZ-CASTRO, Víctor; FIDALGO, Eduardo; ALEGRE, Enrique. Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach. Applied Soft Computing, v. 139, p. 110226, 2023. DOI: 10.1016/j.asoc.2023.110226
7 JOSHI, A.; SABITHA, A. S.; CHOUDHURY, T. Crime analysis using K-Means clustering. In: International Conference on Computational Intelligence and Networks, 3., 2017, Odisha. Proceedings [...]. Odisha: IEEE, p. 33-39, 2017. DOI: 10.1109/CINE.2017.23
8 LAL BEEJAL, C.; AHMED, A.; SIYAL, R.; KUMAR, S.; AFTAB, S.; JAMALI, A. Text clustering using K-Mean. International Journal of Advanced Trends in Computer Science and Engineering, v. 10, p. 2892-2897, 2021. DOI: 10.30534/ijatcse/2021/371042021
9 MCINNES, L.; HEALY, J.; SAUL, N.; GROßBERGER, L. UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software, v. 3, n. 29, p. 861, 2018. DOI: 10.21105/joss.00861
10 MUENNIGHOFF, Niklas; TAZI, Nouamane; MAGNE, Loic; REIMERS, Nils. MTEB: Massive Text Embedding Benchmark. In: VLACHOS, Andreas; AUGENSTEIN, Isabelle (Org.). Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, Dubrovnik, Croatia, maio 2023. Dubrovnik: Association for Computational Linguistics, 2023. p. 2014–2037. DOI: 10.18653/v1/2023.eacl-main.148
11 OLIVEIRA, F. R. de; ZANUSSO, M. B. Clusterização de ocorrências policiais utilizando k-means e um mapa auto-organizável. 2005. DOI: 10.21528/CBRN2005-006
12 REIMERS, N.; GUREVYCH, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, v. 2019, p. 3982-3992, 2019. DOI: 10.18653/v1/D19-1410
13 ROUSSEEUW, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, v. 20, p. 53-65, 1987. DOI: 10.1016/0377-0427(87)90125-7
14 SSPMT - Sistema De Registro de Ocorrências Policiais do Estado de Mato Grosso. Dados extraídos do módulo SROP, referente ao registro de boletins de ocorrência. Cuiabá: SSP-MT, 2025
15 TUKEY, J. W. Exploratory Data Analysis. Reading: Addison-Wesley, 1977
16 VON LUXBURG, U. A tutorial on spectral clustering. Statistics and Computing, v. 17, n. 4, p. 395-416, dez. 2007. DOI: 10.1007/s11222-007-9033-z