1 |
Abel, F. et al. (2010). Analyzing the blogosphere for predicting the success of music and movie products. In ASONAM, pages 276–280, Odense, Denmark.
|
|
2 |
Askin, N. and Mauskapf, M. (2017). What makes popular culture popular? product features and optimal differentiation in music. Amer. Sociolog. Rev., 82(5):910–944.
|
|
3 |
Barbosa, G. R. G., Melo, B. C., Oliveira, G. P., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021). Hot Streaks in the Brazilian Music Market: A Comparison Between Physical and Digital Eras. In SBCM. SBC.
|
|
4 |
Bryan, N. J. and Wang, G. (2011). Musical influence network analysis and rank of sample based music. In ISMIR, pages 329–334.
|
|
5 |
Cosimato, A. et al. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289–123298.
|
|
6 |
Dhanaraj, R. and Logan, B. (2005). Automatic prediction of hit songs. In ISMIR, pages 488–491, London, UK. ISMIR.
|
|
7 |
Garimella, K. and West, R. (2019). Hot streaks on social media. In ICWSM, pages 170–180. AAAI Press.
|
|
8 |
Janosov, M. et al. (2020). Success and luck in creative careers. EPJ Data Sci., 9(1):9.
|
|
9 |
Keogh, E. J. and Pazzani, M. J. (2000). Scaling up dynamic time warping for data mining applications. In KDD, pages 285–289.
|
|
10 |
Klösgen, W. and Zytkow, J. M. (2002). Handbook of data mining and knowledge discovery. Oxford University Press, Inc.
|
|
11 |
Lundberg, S. M. and Lee, S. (2017). A unified approach to interpreting model predictions. In NIPS, pages 4765–4774.
|
|
12 |
Moura, A. F. C., Oliveira, G. P., Brandão, M. A., and Moro, M. M. (2020). Classification and persistence analysis of tie strength on github. In Anais Est. WebMedia, pages 41–44. SBC.
|
|
13 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2022a). Musical Success in the United States and Brazil: Novel Datasets and Temporal Analyses. JIDM.
|
|
14 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2021a). MUHSIC: Music-oriented Hot Streak Information Collection. https://doi.org/10.5281/zenodo.4779003.
|
|
15 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021b). MUHSIC: An open dataset with temporal musical success information. In SBBD DSW, pages 65–76. SBC.
|
|
16 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2023a). Hot streaks in the music industry: Identifying and characterizing above-average success periods in artists’ careers. Scientometrics. [under review].
|
|
17 |
Oliveira, G. P., Lacerda, A., and Moro, M. M. (2020a). Musical genre analysis over dynamic success-based networks. In SBBD WTDBD. SBC.
|
|
18 |
Oliveira, G. P., Lacerda, A., and Moro, M. M. (2022b). Analyses of musical success based on time, genre and collaboration. In Anais do XXXV CTD. SBC.
|
|
19 |
Oliveira, G. P. and Moro, M. M. (2023a). Exceptional collaboration patterns in music genre networks. In BraSNAM. SBC.
|
|
20 |
Oliveira, G. P. and Moro, M. M. (2023b). Mining exceptional genre patterns on hit songs. In KDMiLe. SBC.
|
|
21 |
Oliveira, G. P., Moura, A. F. C., Batista, N. A., Brandao, M. A., Hora, A., and Moro, M. M. (2023b). How do developers collaborate? investigating github heterogeneous networks. Software Quality Journal, 31:211–241.
|
|
22 |
Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020b). Detecting collaboration profiles in success-based music genre networks. In ISMIR, pages 726–732.
|
|
23 |
Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020c). MGD: Music Genre Dataset. https://doi.org/10.5281/zenodo.4778563.
|
|
24 |
Paula, B. C. M., Oliveira, G. P., and Moro, M. M. (2022). Mood Analysis during the COVID-19 Pandemic in Brazil through Music. In WebMedia CTIC, pages 53–56, Porto Alegre, RS, Brasil. SBC.
|
|
25 |
Pimentel, J. F., Oliveira, G. P., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021). Ciência de dados com reprodutibilidade usando jupyter. In Jornada de Atualização em Informática 2021, chapter 1, pages 13–62. SBC.
|
|
26 |
Ren, J. and Kauffman, R. J. (2017). Understanding music track popularity in a social network. In Euro. Conf. Information Systems, pages 374–388, Atlanta, USA. AIS.
|
|
27 |
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Melo-Gomes, L., and Moro, M. M. (2022). From compact discs to streaming: A comparison of eras within the brazilian market. Vortex Music Journal, 10(1).
|
|
28 |
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Scofield, C., and Moro, M. M. (2023). Hit song science: A comprehensive survey and research directions. JNMR. [under review].
|
|
29 |
Shin, S. and Park, J. (2018). On-chart success dynamics of popular songs. Advances in Complex Systems, 21(3-4):1850008.
|
|
30 |
Silva, M. O. et al. (2019). Collaboration Profiles and Their Impact on Musical Success. In Procs. of ACM/SIGAPP SAC, pages 2070–2077, Limassol, Cyprus.
|
|
31 |
Silva, M. O. and Moro, M. M. (2019). Causality analysis between collaboration profiles and musical success. In WebMedia, pages 369–376. ACM.
|
|
32 |
Silva, M. O., Oliveira, G. P., Seufitelli, D. B., and Moro, M. M. (2023). Temporal Success Analysis in Music Collaboration Networks: Brazilian versus Global Scenarios. Vortex Music Journal. [accepted for publication].
|
|
33 |
Silva, M. O., Scofield, C., de Melo-Gomes, L., Botelho, J. E., Oliveira, G. P., Seufitelli, D. B., and Moro, M. M. (2022b). Brazilian reading preferences in goodreads: Crossstate and cross-region analyses. iSys, 15(1).
|
|
34 |
Silva, M. O., Scofield, C., Oliveira, G. P., Seufitelli, D. B., and Moro, M. M. (2021). Exploring brazilian cultural identity through reading preferences. In BraSNAM, pages 115–126.
|
|
35 |
Sinatra, R. et al. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312).
|
|
36 |
Suh, M. M. et al. (2021). AI as social glue: Uncovering the roles of deep generative AI during social music composition. In CHI, pages 582:1–582:11. ACM.
|
|
37 |
Zaki, M. J. and Meira Jr., W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.
|
|