SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Daniel da Silva(dramos@lncc.br)
2 Klaus Wehmuth(klaus@lncc.br)
3 Carla Osthoff(osthoff@lncc.br)
4 Ana Paula Appel(apappel@br.ibm.com)
5 Artur Ziviani(ziviani@lncc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Barabási, A. e Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509–512.
2 Chakrabarti, D. e Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM Computing Surveys, 38(1):2.
3 Cormen, T. H., Leiserson, C. E., Rivest, R. L., e Stein, C. (2009). Introduction to algorithms. MIT Press.
4 Doekemeijer, N. e Varbanescu, A. (2014). A survey of parallel graph processing frameworks. Technical report, Delft University of Technology.
5 Elser, B. e Montresor, A. (2013). An evaluation study of big data frameworks for graph processing. In Proc. IEEE Int. Conf. on Big Data, pages 60–67.
6 Erdős, P. e Rényi, A. (1959). On random graphs i. Publ. Mathematicae Debrecen, 6:290–297.
7 Gonzalez, J., Low, Y., Gu, H., Bickson, D., e Guestrin, C. (2012). PowerGraph: Distributed graph-parallel computation on natural graphs. In Proc. USENIX Symp. on Operating Systems Design and Implementation (OSDI), pages 17–30.
8 Gonzalez, J., Xin, R., Dave, A., Crankshaw, D., Franklin, M., e Stoica, I. (2014). GraphX: Graph processing in a distributed dataflow framework. In Proc. USENIX Symp. on Operating Systems Design and Implementation (OSDI), pages 599–613.
9 Graham, S., Kessler, P., e Mckusick, M. (1982). Gprof: A call graph execution profiler. In Proc. ACM SIGPLAN Notices, pages 120–126.
10 Guo, Y., Biczak, M., Varbanescu, A., Iosup, A., Martella, C., e Willke, T. (2014). How well do graph-processing platforms perform? an empirical performance evaluation and analysis. In Proc. IEEE Int. Parallel and Distributed Processing Symp. (IPDS), pages 395–404.
11 Han, M., Daudjee, K., Ammar, K., Özsu, M., Wang, X., e Jin, T. (2014). An experimental comparison of pregel-like graph processing systems. In Proc. VLDB Endowment, pages 1047–1058.
12 Iosup, A., Hegeman, T., Ngai, W., Heldens, S., Pérez, A., Manhardt, T., Chafi, H., Capota, M., Sundaram, N., Anderson, M., et al. (2016). LDBC graphalytics: A benchmark for large-scale graph analysis on parallel and distributed platforms. Technical report, Delft University of Technology.
13 Jouili, S. e Vansteenberghe, V. (2013). An empirical comparison of graph databases. In Proc. ASE/IEEE Int. Conf. on Social Computing (SocialCom), pages 708–715.
14 Koch, J., Staudt, C., Vogel, M., e Meyerhenke, H. (2016). An empirical comparison of big graph frameworks in the context of network analysis. ArXiv e-prints, abs/1601.00289.
15 Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., e Ghahramani, Z. (2010). Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research, 11:985–1042.
16 Lu, Y., Cheng, J., Yan, D., e Wu, H. (2014). Large-scale distributed graph computing systems: An experimental evaluation. In Proc. VLDB Endowment, pages 281–292.
17 Lumsdaine, A., Gregor, D., Hendrickson, B., e Berry, J. (2007). Challenges in parallel graph processing. Parallel Processing Letters, 17(1):5–20.
18 Malewicz, G., Austern, M., e Bik, A. (2010). Pregel: A system for large-scale graph processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 135–145.
19 Newman, M. (2010). Networks: An introduction. Oxford University Press.
20 Page, L., Brin, S., Motwani, R., e Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab.
21 Penrose, M. (2003). Random geometric graphs. Oxford University Press.
22 Pires, R., Rêgo, L., Macêdo, J., e Vidal, V. (2015). Processamento de grafos em big data. In Hara, C. S., Porto, F., e Ogasawawara, E., editors, Tópicos em Gerenciamento de Dados e Informações – SBBD 2015, chapter 1, pages 8–38. SBC
23 Satish, N., Sundaram, N., Patwary, M., Seo, J., Park, J., Hassaan, M., Sengupta, S., Yin, Z., e Dubey, P. (2014). Navigating the maze of graph analytics frameworks using massive graph datasets. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 979–990.
24 Silva, T. e Zhao, L. (2016). Machine learning in complex networks. Springer.
25 Staudt, C., Sazonovs, A., e Meyerhenke, H. (2014). NetworKit: An interactive tool suite for high-performance network analysis. ArXiv e-prints, abs/1403.3005.
26 Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., e Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proc. USENIX Conf. on Networked Systems Design and Implementation (NSDI), pages 15–28.
27 Zhao, Y., Yoshigoe, K., Xie, M., Zhou, S., Seker, R., e Bian, J. (2014). Evaluation and analysis of distributed graph-parallel processing frameworks. Journal of Cyber Security and Mobility, 3(3):289–316.