SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Phelipe Santos(pheliperodovalho@ufu.br)
2 Fabíola Pereira(fabiola.pereira@ufu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Balakrishnan, J. and Griffiths, M. D. (2017). Social media addiction: What is the role of content in youtube? Journal of behavioral addictions, 6(3):364–377
2 Barabasi, A.-L. and Posfai, M. (2016). Network science. Cambridge University Press, Cambridge.
3 Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks.
4 Chitra, U. and Musco, C. (2020). Analyzing the impact of filter bubbles on social network polarization. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20, page 115–123, New York, NY, USA. Association for Com- puting Machinery.
5 Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube recom- mendations. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, page 191–198. Association for Computing Machinery.
6 Li, W. and Yang, J.-Y. (2009). Comparing networks from a data analysis perspective. In Zhou, J., editor, Complex Sciences, pages 1907–1916, Berlin, Heidelberg. Springer Berlin Heidelberg
7 Lopes, K. V. R. (2022). Recuperac¸ ˜ao da informac¸ ˜ao em v´ıdeos do youtube. Trabalho de Conclus˜ao de Curso (Graduac¸ ˜ao em Sistemas de Informac¸ ˜ao) Universidade Federal de Uberlˆandia.
8 Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. (2007). Measurement and analysis of online social networks. IMC ’07, page 29–42, New York, NY, USA. Association for Computing Machinery.
9 Tantardini, M., Ieva, F., Tajoli, L., and Piccardi, C. (2019). Comparing methods for comparing networks. Scientific Reports, 9.
10 Teixeira, Marcela C.; REIS, J. C. S. (2023). Análise do discurso de Ódio em comentários de vídeos no youtube: Um estudo de caso da cpi da covid-19 no brasil. In Simpósio Brasileiro de Banco de Dados (SBBD), page 330–335. Sociedade Brasileira de Computação
11 Vasconcelos, M., Pereira, E., Guimar˜aes, S., Ribeiro, M. H., Melo, P., and Benevenuto, F. (2020). Analyzing youtube videos shared on whatsapp in the early covid-19 cri- sis. WebMedia ’20, page 25–28, New York, NY, USA. Association for Computing Machinery.
12 Wang, X., Wu, P., Wang, F., and Wu, T. (2020). Collaborative filtering via social learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(4):1234–1247.