1 |
Bland, J. M. and Altman, D. G. (1995). Multiple significance tests: the Bonferroni method. Bmj, 310(6973):170.
|
|
2 |
Bock, R. (2007). MAGIC Gamma Telescope. https://doi.org/10.24432/C52C8B.
|
|
3 |
Dasu, T., Krishnan, S., Venkatasubramanian, S., and Yi, K. (2006). An information-theoretic approach to detecting changes in multi-dimensional data streams. In Symposium on the Interface of Statistics, Computing Science, and Applications (Interface).
|
|
4 |
Ditzler, G. and Polikar, R. (2011). Hellinger distance based drift detection for nonstationary environments. In 2011 IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE), pages 41–48.
|
|
5 |
Gama, J. and Castillo, G. (2006). Learning with local drift detection. In Advanced Data Mining and Applications: Second International Conference, ADMA 2006, Xi’an, China, August 14-16, 2006 Proceedings 2, pages 42–55.
|
|
6 |
Harries, M. (1999). Splice-2 comparative evaluation: electricity pricing. Technical report, The University of New South Wales, Sydney.
|
|
7 |
Hodges Jr, J. (1958). The significance probability of the Smirnov twosample test. Arkiv för matematik, 3(5):469–486.
|
|
8 |
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):2346–2363.
|
|
9 |
Pérez-Cruz, F. (2008). Kullback-Leibler divergence estimation of continuous distributions. In 2008 IEEE international symposium on information theory, pages 1666–1670.
|
|
10 |
Rabanser, S., Günnemann, S., and Lipton, Z. (2019). Failing loudly: An empirical study of methods for detecting dataset shift. Advances in Neural Information Processing Systems, 32.
|
|
11 |
Schlimmer, J. C. and Granger, R. H. (1986). Incremental learning from noisy data. Machine learning, 1:317–354.
|
|
12 |
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J. F., and Dennison, D. (2015). Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems, 2015-Janua:2503–2511.
|
|
13 |
Souza, V. M. A., Reis, D. M., Maletzke, A. G., and Batista, G. E. A. P. A. (2020). Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, 34:1805–1858.
|
|
14 |
Street, W. N. and Kim, Y. (2001). A streaming ensemble algorithm (sea) for large-scale classification. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 377–382.
|
|
15 |
Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., and Petitjean, F. (2016). Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994.
|
|