1 |
Almabdy, S. (2018). Comparative analysis of relational and graph databases for social networks. In International Conference on Computer Applications & Information Se- curity (ICCAIS), pages 1–4.
|
|
2 |
Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., and Singh, K. P. (2020). Analysis of political sentiment orientations on twitter. Procedia Computer Science, 167:1821– 1828.
|
|
3 |
Bamiro, B. and Assayad, I. (2021). Data-based automatic covid-19 rumors detection in social networks. In Ahmed, M. B., Teodorescu, H. L., Mazri, T., Subashini, P., and Boudhir, A. A., editors, Networking, Intelligent Systems and Security - Proceedings of NISS 2021, Kenitra, Morocco, April 1-2, 2021, volume 237 of Smart Innovation, Systems and Technologies, pages 815–827. Springer.
|
|
4 |
Bao, Z., Tay, Y. C., and Zhou, J. (2013). sonschema: A conceptual schema for social networks. In Ng, W., Storey, V. C., and Trujillo, J., editors, Conceptual Modeling - 32th International Conference, ER 2013, Hong-Kong, China, November 11-13, 2013. Proceedings, volume 8217 of Lecture Notes in Computer Science, pages 197–211. Springer.
|
|
5 |
Belloir, N., Ouerdane, W., and Pastor, O. (2022). Characterizing fake news: A conceptual modeling-based approach. In Ralyté, J., Chakravarthy, S., Mohania, M. K., Jeusfeld, M. A., and Karlapalem, K., editors, Conceptual Modeling - 41st International Confer- ence, ER 2022, Hyderabad, India, October 17-20, 2022, Proceedings, volume 13607 of Lecture Notes in Computer Science, pages 115–129. Springer.
|
|
6 |
Breslin, J. G., Harth, A., Bojars, U., and Decker, S. (2005). Towards semantically- interlinked online communities. In Gómez-Pérez, A. and Euzenat, J., editors, The Semantic Web: Research and Applications, Second European Semantic Web Confer- ence, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings, volume 3532 of Lecture Notes in Computer Science, pages 500–514. Springer.
|
|
7 |
Burbach, L., Halbach, P., Ziefle, M., and Valdez, A. C. (2019). Who shares fake news in online social networks? In Papadopoulos, G. A., Samaras, G., Weibelzahl, S., Jannach, D., and Santos, O. C., editors, Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019, Larnaca, Cyprus, June 9-12, 2019, pages 234–242. ACM.
|
|
8 |
Fan, J., Qiu, J., Li, Y., Meng, Q., Zhang, D., Li, G., Tan, K., and Du, X. (2018). OC- TOPUS: an online topic-aware influence analysis system for social networks. In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages 1569–1572. IEEE Computer Society.
|
|
9 |
Kardara, M., Kalogirou, V., Papaoikonomou, A., Varvarigou, T. A., and Tserpes, K. (2014). Socios API: A data aggregator for accessing user generated content from online social networks. In Benatallah, B., Bestavros, A., Catania, B., Haller, A., Manolopou- los, Y., Vakali, A., and Zhang, Y., editors, Web Information Systems Engineering - WISE 2014 Workshops - 15th International Workshops IWCSN 2014, Org2 2014, PCS 2014, and QUAT 2014, Thessaloniki, Greece, October 12-14, 2014, Revised Selected Papers, volume 9051 of Lecture Notes in Computer Science, pages 93–104. Springer.
|
|
10 |
Magalhães Firmino, L. (2022). Comunicação Política, métodos computacionais e pan- demia: os três primeiros meses da Covid-19 no Brasil e seu processo de enquadra- mento no Twitter. PhD thesis, Pontifícia Universidade Católica do Rio De Janeiro PUC-Rio.
|
|
11 |
Matakos, A., Aslay, Ç., Galbrun, E., and Gionis, A. (2022). Maximizing the diversity of exposure in a social network. IEEE Transactions on Knowledge and Data Engineering, 34(9):4357–4370.
|
|
12 |
Mccombs, M. (2008). Setting the agenda: The mass media and public opinion.
|
|
13 |
Passant, A., Bojars, U., Breslin, J. G., and Decker, S. (2009). The SIOC project: Semantically-interlinked online communities, from humans to machines. In Pad- get, J. A., Artikis, A., Vasconcelos, W. W., Stathis, K., da Silva, V. T., Matson, E. T., and Polleres, A., editors, Coordination, Organizations, Institutions and Norms in Agent Systems V, COIN 2009 International Workshops. COIN@AAMAS 2009, Budapest, Hungary, May 2009, COIN@IJCAI 2009, Pasadena, USA, July 2009, COIN@MALLOW 2009, Turin, Italy, September 2009. Revised Selected Papers, vol- ume 6069 of Lecture Notes in Computer Science, pages 179–194. Springer.
|
|
14 |
Rath, B., Gao, W., and Srivastava, J. (2019). Evaluating vulnerability to fake news in social networks: a community health assessment model. In Spezzano, F., Chen, W., and Xiao, X., editors, ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August, 2019, pages 432–435. ACM.
|
|
15 |
Salgueiro, M. D., Pintor, P., Heine, A., Villas, M., dos Santos, V., Schwabe, D., and Lifs- chitz, S. (2023). An approach for a conceptual specification of online social networks. Technical report, Departamento de Informática, PUC-Rio.
|
|
16 |
Taprial, V. and Kanwar, P. (2012). Understanding Social Media. Bookboon.
|
|
17 |
Thorson, E. (2008). Changing patterns of news consumption and participation. Informa-
tion, Communication & Society, 11(4):473–489.
|
|
18 |
Tserpes, K., Papadakis, G., Kardara, M., Papaoikonomou, A., Aisopos, F., Sardis, E., and Varvarigou, T. A. (2012). Socios: A social media application ontology. In Herrero, P., Panetto, H., Meersman, R., and Dillon, T. S., editors, On the Move to Meaningful In- ternet Systems: OTM 2012 Workshops, Confederated International Workshops: OTM Academy, Industry Case Studies Program, EI2N, INBAST, META4eS, OnToContent, ORM, SeDeS, SINCOM, and SOMOCO 2012, Rome, Italy, September 10-14, 2012. Proceedings, volume 7567 of Lecture Notes in Computer Science, pages 574–584. Springer.
|
|
19 |
Vishwakarma, A. and Chugh, M. (2023). COVID-19 vaccination perception and outcome: society sentiment analysis on twitter data in india. Soc. Netw. Anal. Min., 13(1):84.
|
|
20 |
Wang, S., Yang, Z., and Chang, Y. (2021). Bringing order to episodes: Mining timeline in social media. Neurocomputing, 450:80–90.
|
|
21 |
Wycislik, L. and Warchal, L. (2013). A performance comparison of several common computation tasks used in social network analysis performed on graph and relational databases. In Gruca, A., Czachórski, T., and Kozielski, S., editors, Man-Machine In-
teractions 3, Proceedings of the 3rd International Conference on Man-Machine Inter- actions, ICMMI 2013, Brenna, Poland, October 22-25, 2013, volume 242 of Advances in Intelligent Systems and Computing, pages 651–659. Springer.
|
|
22 |
Yousefinaghani, S., Dara, R., Mubareka, S., Papadopoulos, A., and Sharif, S. (2021). An analysis of covid-19 vaccine sentiments and opinions on twitter. International Journal of Infectious Diseases, 108:256–262.
|
|
23 |
Yum, S. (2020). Social network analysis for coronavirus (covid-19) in the united states. Social Science Quarterly, 101(4):1642–1647.
|
|
24 |
Zhang, F., Zhang, Y., Qin, L., Zhang, W., and Lin, X. (2017). When engagement meets similarity: Efficient (k, r)-core computation on social networks. Proc. VLDB Endow., 10(10):998–1009.
|
|