1 |
Babuji, Y. N. et al. (2019). Parsl: Pervasive parallel programming in python. In Weissman, J. B., Butt, A. R., and Smirni, E., editors, HPDC’19, pages 25–36. ACM.
|
|
2 |
Burkat, K., Pawlik, M., Balis, B., Malawski, M., Vahi, K., Rynge, M., da Silva, R. F., and Deelman, E. (2021). Serverless containers – rising viable approach to scientific workflows. In eScience, pages 40–49
|
|
3 |
Carrion, C. (2023). Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM Comput. Surv., 55(7):138:1–138:37
|
|
4 |
de Oliveira, D., Ocaña, K. A. C. S., Baião, F. A., and Mattoso, M. (2012). A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J. Grid Computing, 10(3):521–552
|
|
5 |
de Oliveira, D., Ogasawara, E. S., Baião, F. A., and Mattoso, M. (2010). Scicumulus: A lightweight cloud middleware to explore many task computing paradigm in scientific workflows. In CLOUD’10, pages 378–385.
|
|
6 |
de Oliveira, D., Silva, V., and Mattoso, M. (2015). How much domain data should be in provenance databases? In 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP 15)
|
|
7 |
de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers
|
|
8 |
Deelman, E., da Silva, R. F., Vahi, K., Rynge, M., Mayani, R., Tanaka, R., Whitcup, W. R., and Livny, M. (2021). The pegasus workflow management system: Translational computer science in practice. J. Comput. Sci., 52:101200
|
|
9 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in science & engineering, 10(3):11–21
|
|
10 |
Guedes, T., Martins, L. B., Falci, M. L. F., Silva, V., Ocaña, K. A., Mattoso, M., Bedo, M., and de Oliveira, D. (2020). Capturing and analyzing provenance from spark-based scientific workflows with samba-rap. Future Generation Computer Systems, 112:658 –669
|
|
11 |
Jiang, Q., Lee, Y. C., and Zomaya, A. Y. (2017). Serverless execution of scientific workflows. In ICSOC 2017, pages 706–721. Springer
|
|
12 |
Kunstmann, L., Pina, D., Oliveira, L., Oliveira, D., and Mattoso, M. (2022). Provdeploy: Explorando alternativas de conteinerização com proveniência para aplicações científicas com pad. In Anais do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho,
pages 49–60, Porto Alegre, RS, Brasil. SBC
|
|
13 |
Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PloS one, 12(5):e0177459
|
|
14 |
Ogasawara, E. S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., and Mattoso, M. (2011). An algebraic approach for data-centric scientific workflows. Proc. VLDB Endow., 4(12):1328–1339
|
|
15 |
Ogasawara, E. S., Dias, J., Silva, V., Chirigati, F. S., de Oliveira, D., Porto, F., Valduriez, P., and Mattoso, M. (2013). Chiron: a parallel engine for algebraic scientific workflows. Concurr. Comput. Pract. Exp., 25(16):2327–2341
|
|
16 |
Sakellariou, R. et al. (2009). Mapping workflows on grid resources: Experiments with the montage workflow. In ERCIM W. Group on Grids, pages 119–132
|
|
17 |
Shah, S. T., Lahaye, R. J. W. E., Kazmi, S. A. A., Chung, M. Y., and Hasan, S. F. (2014). Htcondor system for running extensive simulations related to D2D communication. In ICTC, pages 283–284. IEEE
|
|
18 |
Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: runtime dataflow analysis of scientific applications using provenance. Proceedings of the VLDB Endowment, 11(12):2082–2085
|
|
19 |
Struhár, V., Behnam, M., Ashjaei, M., and Papadopoulos, A. V. (2020). Real-time containers: A survey. In Fog-IoT, volume 80 of OASIcs, pages 7:1–7:9
|
|
20 |
Teylo, L., de Paula Junior, U., et al. (2017). A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds. FGCS, 76:1–17
|
|
21 |
Zheng, C., Tovar, B., and Thain, D. (2017). Deploying high throughput scientific workflows on container schedulers with makeflow and mesos. In CCGrid, CCGrid ’17, page 130–139. IEEE Press
|
|