SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 João Neres de Sousa(joaovneres@usp.br)
2 Lucas Mingardo(lucasmingardo@seade.gov.br)
3 Carlos Freire(carlosfreire@seade.gov.br)
4 Agma Traina(agma@icmc.usp.br)
5 Caetano Traina Jr.(caetano@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 AHLUWALIA, A.; WANI, S. Leveraging large language models for web scraping. 2024. Disponível em: https://arxiv.org/abs/2406.08246. Acesso em: 15 jul. 2025.
2 ASLANYÜREK, C.; YERLIKAYA, T. Automatic regular expression generation for extracting relevant image data from web pages using genetic algorithms. IEEE Access, v. 12, p. 90660-90669, 2024.
3 BROWN, T. B. et al. Language models are few-shot learners. 2020. Disponível em: https://arxiv.org/abs/2005.14165. Acesso em: 15 jul. 2025.
4 FUNDAÇÃO SISTEMA ESTADUAL DE ANÁLISE DE DADOS – SEADE. Pesquisa de Investimentos do Estado de São Paulo (PIESP). 2025. Disponível em: https://investimentos.seade.gov.br. Acesso em: 28 abr. 2025.
5 HUANG, W. et al. AutoScraper: a progressive understanding web agent for web scraper generation. 2024. Disponível em: https://arxiv.org/abs/2404.12753. Acesso em: 15 jul. 2025.
6 KHDER, M. A. Web scraping or web crawling: state of the art, techniques, approaches and application. International Journal of Advances in Soft Computing and Its Applications, v. 13, n. 3, p. 145-168, 2021.
7 REYNOLDS, L.; MCDONELL, K. Prompt programming for large language models: beyond the few-shot paradigm. 2021. Disponível em: https://arxiv.org/abs/2102.07350. Acesso em: 15 jul. 2025.
8 ROIG, A. P. Web data scraper. 2023. 222 f. Tese (Doutorado) – Universitat Politècnica de València, València, 2023. Disponível em: https://riunet.upv.es/handle/10251/190669. Acesso em: 15 jul. 2025.
9 SHINN, N. et al. Reflexion: language agents with verbal reinforcement learning. 2023. Disponível em: https://arxiv.org/abs/2303.11366. Acesso em: 15 jul. 2025.
10 WEI, J. et al. Chain-of-thought prompting elicits reasoning in large language models. 2023. Disponível em: https://arxiv.org/abs/2201.11903. Acesso em: 15 jul. 2025.
11 YAO, S. et al. Tree of thoughts: deliberate problem solving with large language models. 2023a. Disponível em: https://arxiv.org/abs/2305.10601. Acesso em: 15 jul. 2025.
12 YAO, S. et al. ReAct: synergizing reasoning and acting in language models. 2023b. Disponível em: https://arxiv.org/abs/2210.03629. Acesso em: 15 jul. 2025.
13 YOU, J.; LEE, K.; KWON, H. DeepScraper: a complete and efficient tweet scraping method using authenticated multiprocessing. Data and Knowledge Engineering, v. 149, p. 102260, 2024.