SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Bernardo Ramos Toresan(bernardo.toresan@inf.ufrgs.br)
2 Viviane Pereira Moreira (viviane@inf.ufrgs.br)
3 Felipe Soares Fagundes Paula(fsfpaula@inf.ufrgs.br)
4 Luciana Regina Bencke(luciana.bencke@inf.ufrgs.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Chen, Tong, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hong- ming Zhang, and Dong Yu (Nov. 2024). “Dense X Retrieval: What Retrieval Granularity Should We Use?” In: Proceedings of the 2024 Conference on Empir- ical Methods in Natural Language Processing. Ed. by Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen. Miami, Florida, USA: Association for Computa- tional Linguistics, pp. 15159–15177. DOI: 10 . 18653 / v1 / 2024 . emnlp - main.845. URL: https://aclanthology.org/2024.emnlp-main. 845/.
2 Chen, Zhiyu, Shiyang Li, Charese Smiley, Zhiqiang Ma, Sameena Shah, and William Yang Wang (2022). “ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering”. In: Proceedings of the EMNLP. Association for Computational Linguistics, pp. 6279–6292.
3 DeepSeek-AI et al. (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv: 2501 . 12948 [cs.CL]. URL: https : //arxiv.org/abs/2501.12948.
4 Ding, Ning, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou (2023). “Enhancing Chat Language Models by Scaling High- quality Instructional Conversations”. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3029–3051.
5 Duarte, Andr´e, Jo˜ao Marques, Miguel Grac¸a, Miguel Freire, Lei Li, and Arlindo Oliveira (2024). “LumberChunker: Long-Form Narrative Document Segmenta- tion”. In: Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 6473–6486.
6 Gharehchopogh, Farhad Soleimanian and Zeinab Abbasi Khalifelu (2011). “Analysis and evaluation of unstructured data: text mining versus natural language processing”. In: 2011 5th International Conference on Application of Information and Com- munication Technologies (AICT). IEEE, pp. 1–4.
7 Hilbert, Martin and Priscila L´opez (2011). “The world’s technological capacity to store, communicate, and compute information”. In: science 332.6025, pp. 60–65.
8 Izacard, Gautier and ´Edouard Grave (2021). “Leveraging Passage Retrieval with Gen- erative Models for Open Domain Question Answering”. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 874–880
9 Kamradt, Greg (2024). Semantic Chunking. https : / / github . com / FullStackRetrieval - com / RetrievalTutorials / tree / main / tutorials/LevelsOfTextSplitting.
10 Karpukhin, Vladimir, Barlas O˘guz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen Tau Yih (2020). “Dense passage retrieval for open- domain question answering”. In: 2020 Conference on Empirical Methods in Natu- ral Language Processing, EMNLP 2020. Association for Computational Linguis- tics (ACL), pp. 6769–6781.
11 Koshorek, Omri, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant (2018). “Text Segmentation as a Supervised Learning Task”. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 469– 473.
12 Lee, Jinhyuk, Alexander Wettig, and Danqi Chen (2021). “Phrase Retrieval Learns Pas- sage Retrieval, Too”. In: Proceedings of the 2021 Conference on Empirical Meth- ods in Natural Language Processing, pp. 3661–3672.
13 Lewis, Patrick, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na- man Goyal, Heinrich K¨uttler, Mike Lewis, Wen-tau Yih, Tim Rockt¨aschel, et al. (2020). “Retrieval-augmented generation for knowledge-intensive NLP tasks”. In: Advances in Neural Information Processing Systems 33, pp. 9459–9474.
14 Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher (2022). “Pointer Sentinel Mixture Models”. In: International Conference on Learning Representa- tions
15 National Library of Medicine (2023). PMC Open Access Subset. Dataset retrieved from Hugging Face Datasets (PubMed Central Open Access dataset, Version 2023-06- 17). Available: https : / / huggingface . co / datasets / pmc / open _ access, cited 2024-05-08.
16 Porzel, Robert and Iryna Gurevych (2003). “Contextual coherence in natural language processing”. In: International and Interdisciplinary Conference on Modeling and Using Context. Springer, pp. 272–285.
17 Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Em- pirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan. Hong Kong, China: Association for Computational Linguistics, pp. 3982–3992. DOI: 10 . 18653 / v1 / D19 - 1410. URL: https://aclanthology.org/D19-1410/.
18 Smith, Brandon and Anton Troynikov (July 2024). Evaluating Chunking Strategies for Retrieval. Tech. rep. https : / / research . trychroma . com / evaluating-chunking. Chroma
19 The White House (2024). State of the Union 2024. Accessed: 2024-05-02.
20 Vaswani, A (2017). “Attention is all you need”. In: Advances in Neural Information Pro- cessing Systems.
21 Yang, Wei, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin (2019). “End-to-End Open-Domain Question Answering with BERT- serini”. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 72–77.