1 |
Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M., Kawarabayashi, K.-i., and Nett, M. (2018). Extreme-value-theoretic estimation of local intrinsic dimensionality. DMKD, 32(6):1768–1805.
|
|
2 |
Amsaleg, L., Chelly, O., Houle, M., Kawarabayashi, K., Radovanovic, M., and Treratanajaru, W. (2019). Intrinsic dimensionality estimation within tight localities. In ICDM.
|
|
3 |
Aumueller, M., Bernhardsson, E., and Faithfull, A. (2020). Ann-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Info. Sys., 87:101374.
|
|
4 |
Aumueller, M. and Ceccarello, M. (2021). The role of local dimensionality measures in benchmarking nearest neighbor search. Info. Sys., 101:101807.
|
|
5 |
Drosou, M., Jagadish, H., Pitoura, E., and Stoyanovich, J. (2017). Diversity in big data: A review. Big Data, 5:73–84.
|
|
6 |
He, J., Kumar, S., and Chang, S.-F. (2012). On the difficulty of nearest neighbor search. In ICML, pages 41–48.
|
|
7 |
Houle, M. (2013). Dimensionality, discriminability, density and distance distributions. In ICDM, pages 468–473. IEEE.
|
|
8 |
Jasbick, D., Dutra Santos, L., de Oliveira, D., and Bedo, M. (2020). Some branches may bear rotten fruits: Diversity browsing vp-trees. In SISAP, pages 140–154. Springer.
|
|
9 |
Jasbick, D., Santos, L., Azevedo-Marques, P., Traina, A., de Oliveira, D., and Bedo, M. (2023). Pushing diversity into higher dimensions: The LID effect on diversified similarity searching. Info. Sys., 114:102166.
|
|
10 |
Kucuktunc, O. and Ferhatosmanoglu, H. (2013). λ-diverse nearest neighbors browsing for multidimensional data. TKDE, 25(3):481–493.
|
|
11 |
Li, L., Xu, J., Li, Y., and Cai, J. (2021). Hctree+: A workload-guided index for approximate knn search. Info. Sc., 581:876–890.
|
|
12 |
Malkov, Y. and Yashunin, D. (2016). Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. TPAMI, PP.
|
|
13 |
Peng, Z., Zhang, M., Li, K., Jin, R., and Ren, B. (2022). Speed-ann: Low-latency and high-accuracy nearest neighbor search via intra-query parallelism.
|
|
14 |
Santana, D. and Ribeiro, L. (2023). Approximate similarity joins over dense vector embeddings. In SBBD, pages 51–62. SBC.
|
|
15 |
Santos, L., Oliveira, W., Ferreira, M., Traina, A., and Traina Jr, C. (2013). Parameter-free and domain-independent similarity search with diversity. In SSDBM, pages 1–12.
|
|
16 |
Shimomura, L. C., Oyamada, R. S., Vieira, M. R., and Kaster, D. S. (2021). A survey on graph-based methods for similarity searches in metric spaces. Info. Sys., 95:101507.
|
|
17 |
Volnyansky, I. and Pestov, V. (2009). Curse of dimensionality in pivot based indexes. In SISAP, pages 39–46. IEEE.
|
|
18 |
Wang, M., Xu, X., Yue, Q., and Wang, Y. (2021). A comprehensive survey and experimental comparison of graph-based approximate nn search. PVLDB, 14(11):1964–1978.
|
|
19 |
Xian, J., Teofili, T., Pradeep, R., and Lin, J. (2024). Vector search with OpenAI embeddings: Lucene is all you need. In ICWSDM, pages 1090–1093.
|
|