SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Mauro Weber(mauro_weber@id.uff.br)
2 João Leite(joaovitorleite@id.uff.br)
3 Daniel de Oliveira(danielcmo@ic.uff.br)
4 Marcos Bedo(marcosbedo@id.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M., Kawarabayashi, K.-i., and Nett, M. (2018). Extreme-value-theoretic estimation of local intrinsic dimensionality. DMKD, 32(6):1768–1805.
2 Amsaleg, L., Chelly, O., Houle, M., Kawarabayashi, K., Radovanovic, M., and Treratanajaru, W. (2019). Intrinsic dimensionality estimation within tight localities. In ICDM.
3 Aumueller, M., Bernhardsson, E., and Faithfull, A. (2020). Ann-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Info. Sys., 87:101374.
4 Aumueller, M. and Ceccarello, M. (2021). The role of local dimensionality measures in benchmarking nearest neighbor search. Info. Sys., 101:101807.
5 Drosou, M., Jagadish, H., Pitoura, E., and Stoyanovich, J. (2017). Diversity in big data: A review. Big Data, 5:73–84.
6 He, J., Kumar, S., and Chang, S.-F. (2012). On the difficulty of nearest neighbor search. In ICML, pages 41–48.
7 Houle, M. (2013). Dimensionality, discriminability, density and distance distributions. In ICDM, pages 468–473. IEEE.
8 Jasbick, D., Dutra Santos, L., de Oliveira, D., and Bedo, M. (2020). Some branches may bear rotten fruits: Diversity browsing vp-trees. In SISAP, pages 140–154. Springer.
9 Jasbick, D., Santos, L., Azevedo-Marques, P., Traina, A., de Oliveira, D., and Bedo, M. (2023). Pushing diversity into higher dimensions: The LID effect on diversified similarity searching. Info. Sys., 114:102166.
10 Kucuktunc, O. and Ferhatosmanoglu, H. (2013). λ-diverse nearest neighbors browsing for multidimensional data. TKDE, 25(3):481–493.
11 Li, L., Xu, J., Li, Y., and Cai, J. (2021). Hctree+: A workload-guided index for approximate knn search. Info. Sc., 581:876–890.
12 Malkov, Y. and Yashunin, D. (2016). Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. TPAMI, PP.
13 Peng, Z., Zhang, M., Li, K., Jin, R., and Ren, B. (2022). Speed-ann: Low-latency and high-accuracy nearest neighbor search via intra-query parallelism.
14 Santana, D. and Ribeiro, L. (2023). Approximate similarity joins over dense vector embeddings. In SBBD, pages 51–62. SBC.
15 Santos, L., Oliveira, W., Ferreira, M., Traina, A., and Traina Jr, C. (2013). Parameter-free and domain-independent similarity search with diversity. In SSDBM, pages 1–12.
16 Shimomura, L. C., Oyamada, R. S., Vieira, M. R., and Kaster, D. S. (2021). A survey on graph-based methods for similarity searches in metric spaces. Info. Sys., 95:101507.
17 Volnyansky, I. and Pestov, V. (2009). Curse of dimensionality in pivot based indexes. In SISAP, pages 39–46. IEEE.
18 Wang, M., Xu, X., Yue, Q., and Wang, Y. (2021). A comprehensive survey and experimental comparison of graph-based approximate nn search. PVLDB, 14(11):1964–1978.
19 Xian, J., Teofili, T., Pradeep, R., and Lin, J. (2024). Vector search with OpenAI embeddings: Lucene is all you need. In ICWSDM, pages 1090–1093.