1 |
Aldeco Perez, R. and Moreau, L. (2008). Provenance-based auditing of private data use. In BCS International Academic Conference.
|
|
2 |
Bartolini, C., Muthuri, R., and Santos, C. (2015). Using ontologies to model data protection requirements in workflows. In JSAI International Symposium on Artificial Intelligence, pages 233–248. Springer.
|
|
3 |
Basin, D., Debois, S., and Hildebrandt, T. (2018). On purpose and by necessity: compliance under the gdpr. In International Conference on Financial Cryptography and Data Security, pages 20–37. Springer.
|
|
4 |
Bates, A., Tian, D. J., Butler, K. R., and Moyer, T. (2015). Trustworthy whole-system provenance for the linux kernel. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pages 319–334.
|
|
5 |
Bier, C. (2013). How usage control and provenance tracking get together-a data protection perspective. In 2013 IEEE Security and Privacy Workshops, pages 13–17. IEEE.
|
|
6 |
Bonatti, P., Kirrane, S., Polleres, A., and Wenning, R. (2017). Transparent personal data processing: The road ahead. In International Conference on Computer Safety, Reliability, and Security, pages 337–349. Springer.
|
|
7 |
Council of European Union (2016). Council regulation (EU) no 2016/679. https://eur-lex.europa.eu/eli/reg/2016/679/oj.
|
|
8 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21.
|
|
9 |
Garijo, D. and Gil, Y. (2013). P-Plan: The P-Plan ontology. W3C recommendation, W3C. https://www.opmw.org/model/p-plan17092013/.
|
|
10 |
GDPR.EU (2019). 2019 GDPR Small Business Survey: Insights from European small business leaders one year into the General Data Protection Regulation. https://gdpr.eu/wp-content/uploads/2019/05/2019-GDPR. EU-Small-Business-Survey.pdf.
|
|
11 |
Gjermundrød, H., Dionysiou, I., and Costa, K. (2016). privacytracker: a privacy-bydesign gdpr-compliant framework with verifiable data traceability controls. In International Conference on Web Engineering, pages 3–15. Springer.
|
|
12 |
Kuner, C. (2012). The european commission’s proposed data protection regulation: A copernican revolution in european data protection law. Bloomberg BNA Privacy and Security Law Report (2012) February, 6(2012):1–15.
|
|
13 |
Martin, A. P., Lyle, J., and Namiluko, C. (2012). Provenance as a security control. In TaPP.
|
|
14 |
Moreau, L. and Missier, P. (2013). PROV-dm: The PROV data model. W3C recommendation, W3C. http://www.w3.org/TR/2013/REC-prov-dm-20130430/.
|
|
15 |
Ozsoyoglu, G. and Snodgrass, R. T. (1995). Temporal and real-time databases: A survey. IEEE Transactions on Knowledge and Data Engineering, 7(4):513–532.
|
|
16 |
Pandit, H. J. and Lewis, D. (2017). Modelling provenance for gdpr compliance using linked open data vocabularies. In PrivOn@ ISWC.
|
|
17 |
Pandit, H. J., O’Sullivan, D., and Lewis, D. (2019). Test-driven approach towards gdpr compliance. In Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., and Sure-Vetter, Y., editors, Semantic Systems. The Power of AI and Knowledge Graphs, pages 19–33, Cham. Springer International Publishing.
|
|
18 |
Pasquier, T. F.-M., Singh, J., Eyers, D., and Bacon, J. (2015). Camflow: Managed datasharing for cloud services. IEEE Transactions on Cloud Computing, 5(3):472–484.
|
|
19 |
Pohly, D. J., McLaughlin, S., McDaniel, P., and Butler, K. (2012). Hi-fi: collecting highfidelity whole-system provenance. In Proceedings of the 28th Annual Computer Security Applications Conference on, pages 259–268.
|
|
20 |
Shastri, S., Banakar, V., Wasserman, M., Kumar, A., and Chidambaram, V. (2019). Understanding and benchmarking the impact of gdpr on database systems. arXiv preprint arXiv:1910.00728.
|
|
21 |
Tankard, C. (2016). What the gdpr means for businesses. Network Security, 2016(6):5–8.
|
|
22 |
Ujcich, B. E., Bates, A., and Sanders, W. H. (2018). A provenance model for the european union general data protection regulation. In International Provenance and Annotation Workshop, pages 45–57. Springer.
|
|
23 |
Wang, L., Near, J. P., Somani, N., Gao, P., Low, A., Dao, D., and Song, D. (2019). Data capsule: A new paradigm for automatic compliance with data privacy regulations. In Heterogeneous Data Management, Polystores, and Analytics for Healthcare, pages 3–23. Springer.
|
|