SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Marcos Bedo(marcosbedo@id.uff.br)
2 Agma Traina(agma@icmc.usp.br)
3 Caetano Traina Jr.(caetano@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Aly, A. M., Aref, W. G., and Ouzzani, M. (2015). Cost estimation of spatial k-nearest-neighbor operators. In EDBT, pages 457–468.
2 Baioco, G. B., Traina, A. J. M., and Traina Jr., C. (2007). MAMCost: Global and Local Estimates leading to Robust Cost Estimation. In SSDBM, pages 1:1–1:6.
3 Bedo, M. V. N., Kaster, D. S., Traina, A. J. M., and Traina Jr., C. (2015). CDH: a novel structure to boost k-nearest neighbor queries. In SSDBM, pages 36:1–36:6.
4 Bustos, B., Navarro, G., and Chávez, E. (2003). Pivot selection techniques for proximity searching in metric spaces. PRL, 24(14):2357–2366.
5 Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for similarity search in metric spaces. In VLDB, pages 426–435.
6 Ciaccia, P., Patella, M., and Zezula, P. (1998). A Cost Model for Similarity Queries in Metric Spaces. In PODS, pages 59–68.
7 Hjaltason, G. R. and Samet, H. (2003). Index-driven similarity search in metric spaces. TDS, 28(1):517–580.
8 Ioannidis, Y. (2003). The history of histograms (abridged). In VLDB, pages 19–30.
9 Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids. North-Holland.
10 König, A. C. and Weikum, G. (2002). A framework for the physical design problem for data synopses. In EDBT, pages 627–645.
11 Korn, F., Pagel, B., and Faloutsos, C. (2001). On the ‘Dimensionality Curse’ and the ‘Self-Similarity Blessing’. TKDE, 13(1):96–111.
12 Lokoč, J. (2010). Tree-based indexing methods for similarity search in metric and non-metric spaces. PhD thesis, Charles University, Ovocný trh 3-5, 116 36 Praha.
13 Lu, Y., Lu, J., Cong, G., Wu, W., and Shahabi, C. (2014). Efficient algorithms and cost models for reverse spatial-keyword kNN search. TDS, 39(2):13:1–13:46.
14 Navarro, G., Paredes, R., Reyes, N., and Bustos, C. (2017). An empirical evaluation of intrinsic dimension estimators. IS, 64:206–218.
15 Skopal, T., Pokorný, J., and Snásel, V. (2004). PM-tree: Pivoting Metric Tree for Similarity Search in Multimedia Databases. In ADBIS, pages 1 – 16.
16 Tao, Y., Zhang, J., P., D., and Mamoulis, N. (2004). An efficient model for optimization of kNN in low and medium dimensional spaces. TKDE, 16(10):1169–1184.
17 Tasan, M. and Özsoyoglu, Z. M. (2004). Improvements in distance-based indexing. In SSDBM, pages 161–170.
18 Traina Jr., C., Traina, A. J. M., Faloutsos, C., and Seeger, B. (2002). Fast indexing and visualization of metric data sets using slim-trees. TKDE, 14(2):244–260.
19 Vieira, M. R., Traina Jr., C., Traina, A. J. M., Arantes, A. S., and Faloutsos, C. (2007). Boosting kNN queries estimating suitable query radii. In SSDBM, pages 1:1 – 1:10.
20 Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2006). Similarity Search - The Metric Space Approach, volume 32. Kluwer.