1 |
Aslam, J. A. and Montague, M. (2001). Models for metasearch. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, page 276–284, New York, NY, USA. Association for Computing Machinery.
|
|
2 |
Calumby, R. T., Gonçalves, M. A., and da Silva Torres, R. (2017). Diversity-based interactive
learning meets multimodality. Neurocomputing, 259:159–175. Multimodal
Media Data Understanding and Analytics.
|
|
3 |
Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank aggregation methods
for the web. In Proceedings of the 10th International Conference on World Wide Web,
page 613–622, New York, NY, USA. ACM.
|
|
4 |
Figuerêdo, J. and Calumby, R. (2019). Unsupervised rank fusion for diverse image
metasearch. In Anais do XXXIV Simpósio Brasileiro de Banco de Dados, pages 265–
270, Porto Alegre, RS, Brasil. SBC.
|
|
5 |
Liang, S., Ren, Z., and de Rijke, M. (2014). Fusion helps diversification. SIGIR ’14, page
303–312, New York, NY, USA. ACM.
|
|
6 |
McDonald, G., Macdonald, C., and Ounis, I. (2022). Search results diversification for
effective fair ranking in academic search. Information Retrieval Journal, 25(1):1–26.
|
|
7 |
Ramírez-de-la-Rosa, G. et al. (2018). Overview of the multimedia information processing
for personality & social networks analysis contest. In ICPR’18, Beijing, China, August
20-24, pages 127–139.
|
|
8 |
Vargas Muñoz, J. A., da Silva Torres, R., and Gonçalves, M. A. (2015). A soft computing
approach for learning to aggregate rankings. page 83–92, New York, NY, USA. ACM.
|
|
9 |
Xu, C. andWu, S. (2017). The early fusion strategy for search result diversification. ACM
TUR-C ’17, New York, NY, USA. ACM.
|
|
10 |
Yigit-Sert, S., Altingovde, I. S., Macdonald, C., Ounis, I., and Özgür Ulusoy (2020). Supervised
approaches for explicit search result diversification. Information Processing
& Management, 57(6):102356.
|
|