1 |
Groove dataset. https://magenta.tensorflow.org/datasets/groove, 2019. Acessado: 29-09-2019.
|
|
2 |
Maestro dataset. https://https://magenta.tensorflow.org/datasets/maestro, 2019. Acessado: 29-09-2019.
|
|
3 |
Cheston, H., Bance, R., and Harrison, P. Deconstructing jazz piano style using machine learning. arXiv preprint arXiv:2504.05009 , 2025.
|
|
4 |
Chowdhury, S. R., Biswas, S., Nandy, S., Maity, S. K., and Chatterjee, D. Music generation using deep learning. Power Devices and Internet of Things for Intelligent System Design, 2025.
|
|
5 |
Chu, H., Urtasun, R., and Fidler, S. Song from pi: A musically plausible network for pop music generation. arXiv preprint arXiv:1611.03477 , 2016.
|
|
6 |
Chuan, C.-H. and Herremans, D. Modeling temporal tonal relations in polyphonic music through deep networks with a novel image-based representation. In Thirty-second AAAI conference on artificial intelligence, 2018.
|
|
7 |
Dhar, A. and Victor, A. Neural harmony: Advancing polyphonic music generation and genre classification through lstm-based networks. In 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, pp. 1–6, 2024.
|
|
8 |
Dong, H.-W., Hsiao, W.-Y., and Yang, Y.-H. Pypianoroll: Open source python package for handling multitrack pianoroll, 2018.
|
|
9 |
Garaudé, A. d. Méthode complète de chant: oeuv. 40. A la Classe de Chant de l’Auteur, 1811.
|
|
10 |
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial networks. arXiv preprint arXiv:1406.2661 , 2019.
|
|
11 |
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of wasserstein gans. In Advances in neural information processing systems. pp. 5767–5777, 2017.
|
|
12 |
Harte, C., Sandler, M., and Gasser, M. Detecting harmonic change in musical audio. In Proceedings of the 1st ACM workshop on Audio and music computing multimedia. ACM, pp. 21–26, 2006.
|
|
13 |
Herremans, D. and Chew, E. Morpheus: generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing, 2017.
|
|
14 |
Mascarenhas, M. 120 Músicas Favoritas Para Piano. Irmãos Vitale, 1961.
|
|
15 |
McCallum, M. C. Unsupervised learning of deep features for music segmentation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 346–350, 2019.
|
|
16 |
Mogren, O. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904 , 2016.
|
|
17 |
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 , 2015.
|
|
18 |
Raffel, C. Learning-based methods for comparing sequences, with applications to audio-to-midi alignment and matching. Ph.D. thesis, Columbia University, 2016.
|
|
19 |
Raffel, C. Midi dataset. https://composing.ai/dataset, 2019. Acessado: 29-09-2019.
|
|
20 |
Richard, G., Lostanlen, V., Yang, Y.-H., and Müller, M. Model-based deep learning for music information research: Leveraging diverse knowledge sources to enhance explainability, controllability, and resource efficiency [special issue on model-based and data-driven audio signal processing]. IEEE Signal Processing Magazine 41 (6): 51–59, 2025.
|
|
21 |
Saito, M., Matsumoto, E., and Saito, S. Temporal generative adversarial nets with singular value clipping. In Proceedings of the IEEE International Conference on Computer Vision. pp. 2830–2839, 2017.
|
|
22 |
Vondrick, C., Pirsiavash, H., and Torralba, A. Generating videos with scene dynamics. In Advances In Neural Information Processing Systems. pp. 613–621, 2016.
|
|
23 |
Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. Midinet: A convolutional generative adversarial network for symbolic domain music generation. arXiv preprint arXiv:1703.10847 , 2017.
|
|
24 |
Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.
|
|