1 |
Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering evolving data streams. In VLDB, pages 81–92. VLDB Endowment.
|
|
2 |
Barioni, M. C. N., Razente, H., Marcelino, A. M. R., Traina, A. J. M., and Traina, C. (2014). Open issues for partitioning clustering methods: An overview. WIREs Data Min. and Knowl. Disc., 4(3):161–177.
|
|
3 |
Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman and Hall/CRC.
|
|
4 |
Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. In ACM ICML, page 11, New York, NY, USA.
|
|
5 |
Castellano, G., Fanelli, A. M., and Torsello, M. A. (2013). Shape Annotation by Incremental Semi-supervised Fuzzy Clustering. In WILF, volume 8256 of LNCS, pages 193–200. Springer.
|
|
6 |
Colonna, J. G., Gama, J., and Nakamura, E. F. (2016). Recognizing Family, Genus, and Species of Anuran Using a Hierarchical Classification Approach. pages 198–212. Springer, Cham.
|
|
7 |
Dubey, A., Bhattacharya, I., and Godbole, S. (2010). A Cluster-Level Semi-supervision Model for Interactive Clustering. pages 409–424.
|
|
8 |
El Moussawi, A., Cheriat, A., Giacometti, A., Labroche, N., and Soulet, A. (2016). Clustering with Quantitative User Preferences on Attributes. In IEEE ICTAI, pages 383–387.
|
|
9 |
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226–231. AAAI Press.
|
|
10 |
Gama, J. (2010). Knowledge discovery from data streams. Chapman & Hall/CRC.
|
|
11 |
Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1):193–218.
|
|
12 |
Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, USA.
|
|
13 |
Lai, H. P., Visani, M., Boucher, A., and Ogier, J.-M. (2014). A new interactive semi-supervised clustering model for large image database indexing. Pattern Recognition Letters, 37(1):94–106.
|
|
14 |
Lelis, L. and Sander, J. (2009). Semi-supervised Density-Based Clustering. In IEEE ICDM, pages 842–847.
|
|
15 |
Liu, E. Y., Zhang, Z., and Wang, W. (2011). Clustering with relative constraints. In ACM SIGKDD, page 947, New York, NY, USA.
|
|
16 |
Oliveira, M. D. and Gama, J. (2010). Bipartite graphs for monitoring clusters transitions. In IDA, pages 114–124. Springer.
|
|
17 |
Pereira, G. and Moreira, J. (2016). Monitoring clusters in the telecom industry. In New Advances in Information Systems and Technologies, pages 631–640. Springer.
|
|
18 |
Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2007). C-DBSCAN: Density-Based Clustering with Constraints, volume 4482 of LNCS. Springer.
|
|
19 |
Silva, W. J., Barioni, M. C. N., de Amo, S., and Razente, H. L. (2015). Semi-supervised clustering using multi-assistant-prototypes to represent each cluster. In SAC, pages 831–836, New York.
|
|
20 |
Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., and Schult, R. (2006). MONIC. In ACM SIGKDD, page 706, New York, NY, USA. ACM Press.
|
|
21 |
Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An Efficient Data Clustering Method for very Large Databases. ACM SIGMOD Record, 25(2):103–114.
|
|