SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maria Camila Barioni(camila.barioni@ufu.br)
2 Elaine Faria(elaine@ufu.br)
3 Guilherme Alves(guilhermealves@ufu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering evolving data streams. In VLDB, pages 81–92. VLDB Endowment.
2 Barioni, M. C. N., Razente, H., Marcelino, A. M. R., Traina, A. J. M., and Traina, C. (2014). Open issues for partitioning clustering methods: An overview. WIREs Data Min. and Knowl. Disc., 4(3):161–177.
3 Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman and Hall/CRC.
4 Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. In ACM ICML, page 11, New York, NY, USA.
5 Castellano, G., Fanelli, A. M., and Torsello, M. A. (2013). Shape Annotation by Incremental Semi-supervised Fuzzy Clustering. In WILF, volume 8256 of LNCS, pages 193–200. Springer.
6 Colonna, J. G., Gama, J., and Nakamura, E. F. (2016). Recognizing Family, Genus, and Species of Anuran Using a Hierarchical Classification Approach. pages 198–212. Springer, Cham.
7 Dubey, A., Bhattacharya, I., and Godbole, S. (2010). A Cluster-Level Semi-supervision Model for Interactive Clustering. pages 409–424.
8 El Moussawi, A., Cheriat, A., Giacometti, A., Labroche, N., and Soulet, A. (2016). Clustering with Quantitative User Preferences on Attributes. In IEEE ICTAI, pages 383–387.
9 Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226–231. AAAI Press.
10 Gama, J. (2010). Knowledge discovery from data streams. Chapman & Hall/CRC.
11 Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1):193–218.
12 Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, USA.
13 Lai, H. P., Visani, M., Boucher, A., and Ogier, J.-M. (2014). A new interactive semi-supervised clustering model for large image database indexing. Pattern Recognition Letters, 37(1):94–106.
14 Lelis, L. and Sander, J. (2009). Semi-supervised Density-Based Clustering. In IEEE ICDM, pages 842–847.
15 Liu, E. Y., Zhang, Z., and Wang, W. (2011). Clustering with relative constraints. In ACM SIGKDD, page 947, New York, NY, USA.
16 Oliveira, M. D. and Gama, J. (2010). Bipartite graphs for monitoring clusters transitions. In IDA, pages 114–124. Springer.
17 Pereira, G. and Moreira, J. (2016). Monitoring clusters in the telecom industry. In New Advances in Information Systems and Technologies, pages 631–640. Springer.
18 Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2007). C-DBSCAN: Density-Based Clustering with Constraints, volume 4482 of LNCS. Springer.
19 Silva, W. J., Barioni, M. C. N., de Amo, S., and Razente, H. L. (2015). Semi-supervised clustering using multi-assistant-prototypes to represent each cluster. In SAC, pages 831–836, New York.
20 Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., and Schult, R. (2006). MONIC. In ACM SIGKDD, page 706, New York, NY, USA. ACM Press.
21 Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An Efficient Data Clustering Method for very Large Databases. ACM SIGMOD Record, 25(2):103–114.