1 |
Cabrera, M. and et al (2022). Dengue prediction in latin america using machine learning and the one health perspective: A literature review. Tropical Medicine and Infectious Disease, 7(10):322.
|
|
2 |
Chouldechova, A. and Roth, A. (2020). A snapshot of the frontiers of fairness in machine learning. Commun. ACM, 63(5):82–89.
|
|
3 |
Ding, F. and et al (2021). Retiring adult: New datasets for fair machine learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W., editors, NeurIPS 2021, December 6-14, 2021, virtual, pages 6478–6490.
|
|
4 |
Khan, F. A. and Stoyanovich, J. (2023). The unbearable weight of massive privilege: Revisiting bias-variance trade-offs in the context of fair prediction. arXiv preprint arXiv:2302.08704.
|
|
5 |
Mirzasoleiman, B., Bilmes, J. A., and Leskovec, J. (2020). Coresets for data-efficient training of machine learning models. In ICML 2020, 13-18 July 2020, volume 119, pages 6950–6960. PMLR.
|
|
6 |
Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
|
|
7 |
Wei, K., Iyer, R., and Bilmes, J. (2015). Submodularity in data subset selection and active learning. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, page 1954–1963. JMLR.org
|
|
8 |
Zhang, D., Maslej, N., Brynjolfsson, E., Etchemendy, J., Lyons, T., Manyika, J., Ngo, H., Niebles, J. C., Sellitto, M., Sakhaee, E., Shoham, Y., Clark, J., and Perrault, R. (2022). The ai index 2022 annual report.
|
|