SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Rocio Zorrilla(romizc@lncc.br)
2 Eduardo Ogasawara( eogasawara@ieee.org)
3 Patrick Valduriez(Patrick.Valduriez@inria.fr)
4 Fabio Porto (fporto@lncc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Box, G. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day
2 Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez, J. E., and Stoica, I. (2017). Clipper: A low-latency online prediction serving system. In NSDI’17 - USENIX, pages 613–627, Boston, MA. USENIX Association.
3 Du, S. S., Wang, Y., Zhai, X., Balakrishnan, S., Salakhutdinov, R. R., and Singh, A. (2018). How many samples are needed to estimate a convolutional neural network? In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.
4 Ghanta, S., Subramanian, S., Khermosh, L., Sundararaman, S., Shah, H., Goldberg, Y., Roselli, D., and Talagala, N. (2019). ML health monitor: taking the pulse of machine learning algorithms in production. In Applications of Machine Learning, volume 11139, pages 191 – 202. International Society for Optics and Photonics, SPIE.
5 Hassani, H. and Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science, 2(1):5–19.
6 Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, 2nd Edition. Springer.
7 Hyndman, R. J. and Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for r. Journal of Statistical Software, Articles, 27(3):1–22.
8 Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4):679 – 688.
9 I. Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep learning for time series classification: A review. Data Min. Knowl. Discov., 33(4):917–963.
10 Izakian, H., Pedrycz, W., and Jamal, I. (2015). Fuzzy clustering of time series data using dynamic time warping distance. Engineering Applications of Artificial Intelligence, 39:235–244.
11 Liao, T. W. (2005). Clustering of time series data: A survey. Pattern Recognition, 38(11):1857 – 1874.
12 Mirzasoleiman, B. (2021). Efficient machine learning from massive datasets.
13 Murat, M., Malinowska, I., Gos, M., and Krzyszczak, J. (2018). Forecasting daily meteorological time series using arima and regression models. International Agrophysics, 32(2):253–264.
14 Oregi, I., Perez, A., Del Ser, J., and Lozano, J. A. (2017). On-line dynamic time warp-´ ing for streaming time series. In Machine Learning and Knowledge Discovery in Databases, pages 591–605, Cham. Springer International Publishing.
15 Pereira, R., Souto, Y., Chaves, A., Zorrilla, R., Tsan, B., Rusu, F., Ogasawara, E., Ziviani, A., and Porto, F. (2021). DJEnsemble: A Cost-Based Selection and Allocation of a Disjoint Ensemble of Spatio-Temporal Models, page 226–231. ACM, NY, USA.
16 Polyzotis, N., Roy, S., Whang, S. E., and Zinkevich, M. (2018). Data lifecycle challenges in production machine learning: A survey. SIGMOD Rec., 47(2):17–28.
17 Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53 – 65.
18 Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., and Becker, E. (2011). Ncep climate forecast system version 2 (cfsv2) selected hourly time-series products.
19 Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49.
20 Souto, Y. M., Porto, F., de Carvalho Moura, A. M., and Bezerra, E. (2018). A spatiotemporal ensemble approach to rainfall forecasting. In IJCNN, 2018, pages 1–8.
21 Wang, W., Gao, J., Zhang, M., Wang, S., Chen, G., Ng, T. K., Ooi, B. C., Shao, J., and Reyad, M. (2018). Rafiki: Machine learning as an analytics service system. Proc. VLDB Endow., 12(2):128–140.
22 Xu, G., Ren, T., Chen, Y., and Che, W. (2020). A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis. Frontiers in Neuroscience, 14:1253.