1 |
Cunha, W., Canuto, S., Viegas, F., Salles, T., Gomes, C., Mangaravite, V., Resende, E., Rosa, T., Gonçalves, M. A., and Rocha, L. (2020). Extended pre-processing pipeline for text classification: On the role of meta-feature representations, sparsification and selective sampling. Information
Processing & Management, 57(4):102263.
|
|
2 |
Cunha, W., França, C., Fonseca, G., Rocha, L., and Gonçalves, M. A. (2023a). An effective, efficient, and scalable confidence-based instance selection framework for transformer-based text classification. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 665–674.
|
|
3 |
Cunha, W., Mangaravite, V., Gomes, C., Canuto, S., Resende, E., Nascimento, C., Viegas, F., França, C., Martins, W. S., Almeida, J. M., et al. (2021). On the cost-effectiveness of neural and non-neural approaches and representations for text classification: A comprehensive comparative study. Information Processing & Management, 58(3):102481.
|
|
4 |
Cunha, W., Moreo Fernández, A., Esuli, A., Sebastiani, F., Rocha, L., and Gonçalves, M. A. (2025). A noise-oriented and redundancy-aware instance selection framework. ACM Transactions on Information Systems, 43(2):1–33.
|
|
5 |
Cunha, W., Viegas, F., França, C., Rosa, T., Rocha, L., and Gonçalves, M. A. (2023b). A comparative survey of instance selection methods applied to non-neural and transformer-based text classification. ACM Computing Surveys, 55(13s):1–52.
|
|
6 |
DeepSeek et al. (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
|
|
7 |
Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012). Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence
|
|
8 |
Martins, K., Vaz de Melo, P., and Santos, R. (2021). Why do document-level polarity classifiers fail? In Proceedings of the 2021 Conference of the NAACL: Human Language Technologies.
|
|
9 |
Ng, A. (2016). Nuts and bolts of building ai applications using deep learning. NIPS Keynote Talk, 64.
|
|
10 |
Rajaraman, S., Ganesan, P., and Antani, S. (2022). Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PloS one.
|
|
11 |
Roy, A. and Cambria, E. (2022). Soft labeling constraint for generalizing from sentiments in single domain. Knowledge-Based Systems, 245:108346.
|
|
12 |
Uppaal, R., Hu, J., and Li, Y. (2023). Is fine-tuning needed? pre-trained language models are near perfect for out-of-domain detection. arXiv preprint arXiv:2305.13282.
|
|