1 |
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. ArXiv, abs/2004.10934.
|
|
2 |
Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8):1532–1545.
|
|
3 |
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338.
|
|
4 |
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence, 32(9):1627–1645.
|
|
5 |
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 580– 587. IEEE.
|
|
6 |
Jung, H., Choi, M.-K., Jung, J., Lee, J.-H., Kwon, S., and Jung, W. Y. (2017). Resnet-based vehicle classification and localization in traffic surveillance systems. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 934–940. IEEE.
|
|
7 |
Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S., Kuznetsova, A., Rom, H., Uijlings, J., Popov, S., Veit, A., et al. (2017). Openimages: A public dataset for large-scale multi-label and multi-class image classification. https://github.com/openimages.
|
|
8 |
Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont- Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., et al. (2020). The open images dataset v4. International Journal of Computer Vision, 128(7):1956–1981.
|
|
9 |
Li, X., Flohr, F., Yang, Y., Xiong, H., Braun, M., Pan, S., Li, K., and Gavrila, D. M. (2016). A new benchmark for vision-based cyclist detection. In 2016 IEEE Intelligent Vehicles Symposium (IV), pages 1028–1033. IEEE.
|
|
10 |
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer.
|
|
11 |
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In European Conference on Computer Vision, pages 21–37. Springer.
|
|
12 |
Luo, Z., Branchaud-Charron, F., Lemaire, C., Konrad, J., Li, S., Mishra, A., Achkar, A., Eichel, J., and Jodoin, P.-M. (2018). Mio-tcd: A new benchmark dataset for vehicle classification and localization. IEEE Transactions on Image Processing, 27(10):5129–5141.
|
|
13 |
MacAskill, D. (2018). Putting your best photo forward: Flickr updates. https://blog.flickr.net/.
|
|
14 |
Masalov, A., Matrenin, P., Ota, J., Wirth, F., Stiller, C., Corbet, H., and Lee, E. (2019). Specialized cyclist detection dataset: Challenging real-world computer vision dataset for cyclist detection using a monocular rgb camera. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 114–118. IEEE.
|
|
15 |
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 779–788. IEEE.
|
|
16 |
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6517–6525. IEEE.
|
|
17 |
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. ArXiv, abs/1804.02767.
|
|
18 |
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, volume 28, pages 91–99. Curran Associates, Inc.
|
|
19 |
Robert, Ross, Marcin, Elvis, Guillem, Andrew, and Thomas (2022). Papers with code. https://paperswithcode.com/sota/object-detection-on-coco. Acessado em 20/05/2022.
|
|
20 |
Santhosh, K. K., Dogra, D. P., and Roy, P. P. (2020). Anomaly detection in road traffic using visual surveillance: A survey. ACM Comput. Surv., 53(6).
|
|
21 |
Tan, M., Pang, R., and Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 10778–10787. IEEE.
|
|
22 |
Wang, T., He, X., Su, S., and Guan, Y. (2017). Efficient scene layout aware object detection for traffic surveillance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 926–933. IEEE.
|
|
23 |
Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M., and Lee, B. (2022). A survey of modern deep learning based object detection models. Digital Signal Processing, 126:103514.
|
|
24 |
Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115.
|
|
25 |
Zhou, X., Gong, W., Fu, W., and Du, F. (2017). Application of deep learning in object detection. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), pages 631–634. IEEE.
|
|
26 |
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76.
|
|